2024年成考专升本《高等数学一》每日一练试题09月24日

聚题库
09/24
<p class="introTit">单选题</p><p>1、<img src="https://img2.meite.com/questions/202408/1666bec6cbd7c43.png" />()。  </p><ul><li>A:x<sup>2</sup></li><li>B:2x<sup>2</sup></li><li>C:x</li><li>D:2x</li></ul><p>答 案:A</p><p>解 析:<img src="https://img2.meite.com/questions/202408/1666bec6d274ca6.png" /></p><p>2、设y<sup>(n-2)</sup>=sinx,则y<sup>(n)</sup>=()  </p><ul><li>A:cosx</li><li>B:-cosx</li><li>C:sinx</li><li>D:-sinx</li></ul><p>答 案:D</p><p>解 析:<img src="https://img2.meite.com/questions/202303/036401aacb205c4.png" />因此<img src="https://img2.meite.com/questions/202303/036401aad58b2c6.png" /></p><p>3、设y=x+sinx,则y'=()。</p><ul><li>A:sinx</li><li>B:x</li><li>C:x+cos</li><li>D:1+cosx</li></ul><p>答 案:D</p><p>解 析:y=x+sinx,<img src="https://img2.meite.com/questions/202211/176375ae8b646af.png" />。</p><p class="introTit">主观题</p><p>1、求微分方程y'-<img src="https://img2.meite.com/questions/202212/03638ac17eaa5ba.png" />=lnx满足初始条件<img src="https://img2.meite.com/questions/202212/03638ac1908c65f.png" />=1的特解。</p><p>答 案:解:P(x)=<img src="https://img2.meite.com/questions/202212/03638ac1a3efa02.png" />,Q(x)=lnx,则<img src="https://img2.meite.com/questions/202212/03638ac1b4c4f05.png" />所以<img src="https://img2.meite.com/questions/202212/03638ac1c719a0f.png" />将<img src="https://img2.meite.com/questions/202212/03638ac1d4d883b.png" />=1代入y式,得C=1.故所求特解为<img src="https://img2.meite.com/questions/202212/03638ac2042e0a4.png" />。</p><p>2、求<img src="https://img2.meite.com/questions/202211/176375dbda1481e.png" /></p><p>答 案:解:<img src="https://img2.meite.com/questions/202211/176375dbf09b912.png" /><img src="https://img2.meite.com/questions/202211/176375dc0691603.png" /><img src="https://img2.meite.com/questions/202211/176375dc15283c0.png" />。</p><p>3、计算<img src="https://img2.meite.com/questions/202212/016388103fbbdde.png" /></p><p>答 案:解:令t=<img src="https://img2.meite.com/questions/202212/01638810520a9e4.png" />,则x=t<sup>2</sup>,dx=2tdt。当x=1时,t=1;当x=4时。t=2。则<img src="https://img2.meite.com/questions/202212/0163881078ce0bf.png" /><img src="https://img2.meite.com/questions/202212/016388108a33424.png" /></p><p class="introTit">填空题</p><p>1、<img src="https://img2.meite.com/questions/202303/0364019f1fb462f.png" /></p><p>答 案:<img src="https://img2.meite.com/questions/202303/036401ad3643fa5.png" /></p><p>解 析:<img src="https://img2.meite.com/questions/202303/036401ad42b3402.png" /><img src="https://img2.meite.com/questions/202303/036401ad62732bb.png" /></p><p>2、<img src="https://img2.meite.com/questions/202408/1666bef99e3eb5b.png" />  </p><p>答 案:<img src="https://img2.meite.com/questions/202408/1666bef990dd710.png" /></p><p>解 析:<img src="https://img2.meite.com/questions/202408/1666bef9a312ca2.png" /> <img src="https://img2.meite.com/questions/202408/1666bef9a9e6a7b.png" />  </p><p>3、若<img src="https://img2.meite.com/questions/202212/0163885c95d64f9.png" />,则幂级数<img src="https://img2.meite.com/questions/202212/0163885ca31740f.png" />的收敛半径为()。</p><p>答 案:2</p><p>解 析:若<img src="https://img2.meite.com/questions/202212/0163885cb0df988.png" />,则收敛半径<img src="https://img2.meite.com/questions/202212/0163885cbf0329e.png" />,<img src="https://img2.meite.com/questions/202212/0163885ccc7c05d.png" />,所以R=2。</p><p class="introTit">简答题</p><p>1、求方程<img src="https://img2.meite.com/questions/202303/17641427a20cfc0.png" />的通解。  </p><p>答 案:<img src="https://img2.meite.com/questions/202303/17641427b60f0c0.png" /></p>
相关题库