2024年成考专升本《高等数学一》每日一练试题09月20日
<p class="introTit">单选题</p><p>1、设曲线<img src="https://img2.meite.com/questions/202211/296385ce71aec04.png" />上某点处的切线方程为y=mx,则m的值可能是()。</p><ul><li>A:0</li><li>B:1</li><li>C:2</li><li>D:3</li></ul><p>答 案:B</p><p>解 析:<img src="https://img2.meite.com/questions/202211/296385ce8746438.png" />又曲线<img src="https://img2.meite.com/questions/202211/296385ce94a4774.png" />上某点处的切线方程为y=mx,设该点为<img src="https://img2.meite.com/questions/202211/296385ceb05f9b5.png" />,则有<img src="https://img2.meite.com/questions/202211/296385cebf00a66.png" />,解得m=1或5。</p><p>2、<img src="https://img2.meite.com/questions/202211/30638711831608e.png" />()。</p><ul><li>A:>0</li><li>B:<0</li><li>C:=0</li><li>D:不存在</li></ul><p>答 案:C</p><p>解 析:被积函数<img src="https://img2.meite.com/questions/202211/3063871194a57ac.png" />为奇函数,且积分区间[1,1]为对称区间,由定积分的对称性质知该函数的积分为0。</p><p>3、若<img src="https://img2.meite.com/questions/202211/28638484534fa1b.png" />存在,<img src="https://img2.meite.com/questions/202211/286384845d97212.png" />不存在,则()。</p><ul><li>A:<img src='https://img2.meite.com/questions/202211/286384846bd529c.png' />与<img src='https://img2.meite.com/questions/202211/286384848303fa3.png' />都不存在</li><li>B:<img src='https://img2.meite.com/questions/202211/286384846d1c0c2.png' />与<img src='https://img2.meite.com/questions/202211/28638484845ef6e.png' />都存在</li><li>C:<img src='https://img2.meite.com/questions/202211/286384846e52c56.png' />与<img src='https://img2.meite.com/questions/202211/2863848485b5acb.png' />之中的一个存在</li><li>D:<img src='https://img2.meite.com/questions/202211/2863848470a5d09.png' />存在与否与f(x),g(x)的具体形式有关</li></ul><p>答 案:A</p><p>解 析:根据极限的四则运算法则可知:<img src="https://img2.meite.com/questions/202211/286384849f3c66d.png" />,<img src="https://img2.meite.com/questions/202211/28638484ae2d7d9.png" />,所以当<img src="https://img2.meite.com/questions/202211/28638484ba90b0a.png" />存在,<img src="https://img2.meite.com/questions/202211/28638484c693a23.png" />不存在时,<img src="https://img2.meite.com/questions/202211/28638484d866119.png" />,<img src="https://img2.meite.com/questions/202211/28638484e45f3ae.png" />均不存在。</p><p class="introTit">主观题</p><p>1、求微分方程<img src="https://img2.meite.com/questions/202212/03638b01839ca7b.png" />的通解.</p><p>答 案:解:对应齐次微分方程的特征方程为<img src="https://img2.meite.com/questions/202212/03638b019490467.png" />,解得r<sub>1</sub>=3,r<sub>2</sub>=-2.所以齐次通解为<img src="https://img2.meite.com/questions/202212/03638b01b0cf47a.png" />。设方程的特解设为y*=(Ax+B)e<sup>x</sup>,代入原微分方程可解得,A=<img src="https://img2.meite.com/questions/202212/03638b01cb92f6c.png" />,B=<img src="https://img2.meite.com/questions/202212/03638b01d9339ef.png" />.即非齐次微分方程特解为<img src="https://img2.meite.com/questions/202212/03638b01ea50130.png" />。所以微分方程<img src="https://img2.meite.com/questions/202212/03638b01f95ca36.png" />的通解为<img src="https://img2.meite.com/questions/202212/03638b0209e7294.png" />。</p><p>2、求微分方程<img src="https://img2.meite.com/questions/202211/16637484836cd55.png" />的通解.</p><p>答 案:解:对应齐次微分方程的特征方程为<img src="https://img2.meite.com/questions/202211/166374848d66f86.png" />特征根为r=1(二重根)。齐次方程的通解为y=(C<sub>1</sub>+C<sub>2</sub>x)<img src="https://img2.meite.com/questions/202211/16637484d1aae1c.png" />(C1,C2为任意常数)。<br />设原方程的特解为<img src="https://img2.meite.com/questions/202211/16637484db40088.png" />,代入原方程可得<img src="https://img2.meite.com/questions/202211/16637484e066dc6.png" />因此<img src="https://img2.meite.com/questions/202211/16637484e4b07a5.png" /><br />故原方程的通解为<img src="https://img2.meite.com/questions/202211/16637484e9df56d.png" /></p><p>3、设f(x)是以T为周期的连续函数,a为任意常数,证明:<img src="https://img2.meite.com/questions/202212/01638810a04c178.png" />。</p><p>答 案:证:因为<img src="https://img2.meite.com/questions/202212/01638810b105867.png" />令x=T+t,做变量替换得<img src="https://img2.meite.com/questions/202212/01638810cade25f.png" />故<img src="https://img2.meite.com/questions/202212/01638810de0e205.png" /></p><p class="introTit">填空题</p><p>1、设z=sin(y+x<sup>2</sup>),则<img src="https://img2.meite.com/questions/202408/1666beb22aa4037.png" />=()。
</p><p>答 案:2xcos(y+x<sup>2</sup>)。</p><p>解 析:本题考查的知识点为二元函数的偏导数计算。 <img src="https://img2.meite.com/questions/202408/1666beb2300507c.png" />
</p><p>2、<img src="https://img2.meite.com/questions/202408/1666bf05e527c81.png" />
</p><p>答 案:<img src="https://img2.meite.com/questions/202408/1666bf05e91163b.png" /></p><p>解 析:<img src="https://img2.meite.com/questions/202408/1666bf05ece4a1d.png" /></p><p>3、已知<img src="https://img2.meite.com/questions/202211/3063872438d1a7f.png" />,则<img src="https://img2.meite.com/questions/202211/30638724485b269.png" />=()。</p><p>答 案:<img src="https://img2.meite.com/questions/202211/3063872454cd35d.png" /></p><p>解 析:<img src="https://img2.meite.com/questions/202211/3063872462b1da2.png" /><img src="https://img2.meite.com/questions/202211/306387246f61d8b.png" /><img src="https://img2.meite.com/questions/202211/306387247f5c8bb.png" /></p><p class="introTit">简答题</p><p>1、求方程<img src="https://img2.meite.com/questions/202303/17641427a20cfc0.png" />的通解。
</p><p>答 案:<img src="https://img2.meite.com/questions/202303/17641427b60f0c0.png" /></p>