2024年成考专升本《高等数学一》每日一练试题09月15日
<p class="introTit">单选题</p><p>1、设y=x3+2x+3,则y''=()。</p><ul><li>A:6x</li><li>B:3x</li><li>C:2x</li><li>D:2</li></ul><p>答 案:A</p><p>解 析:<img src="https://img2.meite.com/questions/202212/03638ae428259a3.png" />。</p><p>2、微分方程<img src="https://img2.meite.com/questions/202303/176413fd1db62a4.png" />的通解为()</p><ul><li>A:<img src='https://img2.meite.com/questions/202303/176413fd3002785.png' /></li><li>B:<img src='https://img2.meite.com/questions/202303/176413fd3b07929.png' /></li><li>C:<img src='https://img2.meite.com/questions/202303/176413fd42006ba.png' /></li><li>D:<img src='https://img2.meite.com/questions/202303/176413fd477c552.png' /></li></ul><p>答 案:C</p><p>解 析:设<img src="https://img2.meite.com/questions/202303/176413fd6e81f66.png" />代入有<img src="https://img2.meite.com/questions/202303/176413fd7d72bde.png" />所以<img src="https://img2.meite.com/questions/202303/176413fd90182b3.png" /><img src="https://img2.meite.com/questions/202303/176413fda798e44.png" />原方程的通解为<img src="https://img2.meite.com/questions/202303/176413fdb8328b7.png" /></p><p>3、微分方程<img src="https://img2.meite.com/questions/202408/1666bf0572b3d02.png" />的特征根为()。
</p><ul><li>A:0,4</li><li>B:-2,2</li><li>C:-2,4</li><li>D:2,4</li></ul><p>答 案:B</p><p>解 析:由r<sup>2</sup>-4=0,r<sub>1</sub>=2,r<sub>2</sub>=-2,知<img src="https://img2.meite.com/questions/202408/1666bf057766a1e.png" />的特征根为2,-2,故选B。</p><p class="introTit">主观题</p><p>1、设函数f(x)由<img src="https://img2.meite.com/questions/202211/176375a9a462105.png" />所确定,求<img src="https://img2.meite.com/questions/202211/176375a9b68f239.png" /></p><p>答 案:解:方法一:方程两边同时对x求导,得<img src="https://img2.meite.com/questions/202211/176375a9cd89294.png" />即<img src="https://img2.meite.com/questions/202211/176375a9de829b7.png" />故<img src="https://img2.meite.com/questions/202211/176375a9ec6e2cb.png" /><br />方法二:设<img src="https://img2.meite.com/questions/202211/176375a9fdad664.png" />,<br />则<img src="https://img2.meite.com/questions/202211/176375aa1004c84.png" /><img src="https://img2.meite.com/questions/202211/176375aa1f17e53.png" /></p><p>2、求过点M<sub>0</sub>(0,2,4),且与两个平面π1,π2都平行的直线方程,其中<img src="https://img2.meite.com/questions/202212/03638af2a68be37.png" /></p><p>答 案:解:如果直线l平行于π1,则平面π1的法线向量n1必定垂直于直线l的方向向量s.同理,直线l平行于π2,则平面π2的法线向量n2必定满足n2⊥s.由向量积的定义可知,取<img src="https://img2.meite.com/questions/202212/03638af2cfcec2f.png" />由于直线l过点M<sub>0</sub>(0,2,4),由直线的标准方程可知<img src="https://img2.meite.com/questions/202212/03638af2eb2ecba.png" />为所求直线方程。</p><p>3、设y=(sinx)e<sup>x+2</sup>,求y'。</p><p>答 案:解:<img src="https://img2.meite.com/questions/202211/306387014c81979.png" /></p><p class="introTit">填空题</p><p>1、<img src="https://img2.meite.com/questions/202408/1666bf06213d7ec.png" />
</p><p>答 案:1</p><p>解 析:<img src="https://img2.meite.com/questions/202408/1666bf0625c043b.png" /><img src="https://img2.meite.com/questions/202408/1666bf062a2ad15.png" /></p><p>2、已知<img src="https://img2.meite.com/questions/202212/03638aeb1ea5f65.png" />,则<img src="https://img2.meite.com/questions/202212/03638aeb2a5de0c.png" />=()。</p><p>答 案:<img src="https://img2.meite.com/questions/202212/03638aeb34ba88f.png" /></p><p>解 析:因为<img src="https://img2.meite.com/questions/202212/03638aeb3e9def0.png" />,故<img src="https://img2.meite.com/questions/202212/03638aeb48d3225.png" />。</p><p>3、<img src="https://img2.meite.com/questions/202408/1666bebc9389020.png" />
</p><p>答 案:<img src="https://img2.meite.com/questions/202408/1666bebca778275.png" /></p><p>解 析:<img src="https://img2.meite.com/questions/202408/1666bebc986211c.png" /></p><p class="introTit">简答题</p><p>1、设y=x+sinx,求y”。
</p><p>答 案:由导数的四则运算法则可知: <img src="https://img2.meite.com/questions/202408/1566bdc18f8d6db.png" />
</p>