2024年成考专升本《高等数学一》每日一练试题09月08日

聚题库
09/08
<p class="introTit">单选题</p><p>1、微分方程<img src="https://img2.meite.com/questions/202408/1666bef9264e2f9.png" />的通解为y=()。  </p><ul><li>A:e-x+C</li><li>B:-e-x+C</li><li>C:Ce<sup>-x</sup></li><li>D:Ce<sup>x</sup></li></ul><p>答 案:C</p><p>解 析:所给方程为可分离变量方程。<img src="https://img2.meite.com/questions/202408/1666bef92b384cc.png" /> <img src="https://img2.meite.com/questions/202408/1666bef93791340.png" />  </p><p>2、设<img src="https://img2.meite.com/questions/202211/176375fffdc6fce.png" />与<img src="https://img2.meite.com/questions/202211/176376000a56c70.png" />都为正项级数,且<img src="https://img2.meite.com/questions/202211/1763760017d685f.png" />则下列结论正确的是()。</p><ul><li>A:若<img src='https://img2.meite.com/questions/202211/176376003a44e7a.png' />收敛,则<img src='https://img2.meite.com/questions/202211/1763760048b1d0a.png' />收敛</li><li>B:若<img src='https://img2.meite.com/questions/202211/176376005457117.png' />发散,则<img src='https://img2.meite.com/questions/202211/176376006229a54.png' />发散</li><li>C:若<img src='https://img2.meite.com/questions/202211/1763760080cc99e.png' />收敛,则<img src='https://img2.meite.com/questions/202211/17637600916ac24.png' />收敛</li><li>D:若<img src='https://img2.meite.com/questions/202211/176376009e49fa5.png' />收敛,则<img src='https://img2.meite.com/questions/202211/17637600a929d79.png' />发散</li></ul><p>答 案:C</p><p>解 析:由正项级数的比较判别法可知,若<img src="https://img2.meite.com/questions/202211/17637600ba270c9.png" />都为正项级数,且<img src="https://img2.meite.com/questions/202211/17637600c938b5b.png" />则当<img src="https://img2.meite.com/questions/202211/17637600d887cb8.png" />收敛时,可得知<img src="https://img2.meite.com/questions/202211/17637600e8480be.png" />必定收敛.</p><p>3、设f(x)在点x<sub>0</sub>处取得极值,则()。</p><ul><li>A:<img src='https://img2.meite.com/questions/202211/296385cceb5f332.png' />不存在或<img src='https://img2.meite.com/questions/202211/296385ccf9c4612.png' /></li><li>B:<img src='https://img2.meite.com/questions/202211/296385cd059d6fb.png' />必定不存在</li><li>C:<img src='https://img2.meite.com/questions/202211/296385cd070981a.png' />必定存在且<img src='https://img2.meite.com/questions/202211/296385cd1748947.png' /></li><li>D:<img src='https://img2.meite.com/questions/202211/296385cd085c964.png' />必定存在,不一定为零</li></ul><p>答 案:A</p><p>解 析:若点x<sub>0</sub>为f(x)的极值点,可能为两种情形之一:(1)若f(x)在点x<sub>0</sub>处可导,由极值的必要条件可知<img src="https://img2.meite.com/questions/202211/296385cd3ecee9f.png" />;(2)如f(x)=|x|在点x=0处取得极小值,但f(x)=|x|在点x=0处不可导,这表明在极值点处,函数可能不可导。</p><p class="introTit">主观题</p><p>1、欲围造一个面积为15000平方米的运动场,其正面材料造价为每平方米600元,其余三面材料造价为每平方米300元,试问正面长为多少米才能使材料费最少?</p><p>答 案:解:设运动场正面围墙长为x米,则宽为<img src="https://img2.meite.com/questions/202211/3063870c5a1f7e1.png" />,设四面围墙高相同,记为h,则四面围墙所用材料费用,f(x)为<img src="https://img2.meite.com/questions/202211/3063870c7358bc8.png" /><img src="https://img2.meite.com/questions/202211/3063870cce56ecc.png" />令<img src="https://img2.meite.com/questions/202211/3063870c9a2e335.png" />得驻点x<sub>1</sub>=100,x<sub>2</sub>=-100(舍掉),<img src="https://img2.meite.com/questions/202211/3063870cdd70784.png" />由于驻点唯一,且实际问题中存在最小值,可知x=100米,侧面长150米时,所用材料费最小。</p><p>2、计算<img src="https://img2.meite.com/questions/202211/176375daf19ee29.png" /></p><p>答 案:解:利用洛必达法则,得<img src="https://img2.meite.com/questions/202211/176375db05a5eb7.png" /></p><p>3、求微分方程<img src="https://img2.meite.com/questions/202212/03638ac2f04259b.png" />的通解。</p><p>答 案:解:原方程对应的齐次方程为<img src="https://img2.meite.com/questions/202212/03638ac300089f5.png" />,特征方程及特征根为r<sup>2</sup>-4r+4=0,r<sub>1,2</sub>=2,齐次方程的通解为<img src="https://img2.meite.com/questions/202212/03638ac33159fca.png" />。在自由项<img src="https://img2.meite.com/questions/202212/03638ac3410667c.png" />中,a=-2不是特征根,所以设<img src="https://img2.meite.com/questions/202212/03638ac35b7ee07.png" />,代入原方程,有<img src="https://img2.meite.com/questions/202212/03638ac36d49e52.png" />,故原方程通解为<img src="https://img2.meite.com/questions/202212/03638ac37e8351d.png" />。</p><p class="introTit">填空题</p><p>1、微分方程xy'+y=0满足y(1)=1的解为y=()  </p><p>答 案:<img src="https://img2.meite.com/questions/202405/166645be1779835.png" /></p><p>解 析:由xy'+y=0得<img src="https://img2.meite.com/questions/202405/166645be1dd3ade.png" />,通解为<img src="https://img2.meite.com/questions/202405/166645be235c986.png" />,将y(1)=1代入通解,得C=1,故所求的解为<img src="https://img2.meite.com/questions/202405/166645be2993b0d.png" /></p><p>2、广义积分<img src="https://img2.meite.com/questions/202212/01638805ac70a46.png" />=()。</p><p>答 案:<img src="https://img2.meite.com/questions/202212/01638805b690ea3.png" /></p><p>解 析:<img src="https://img2.meite.com/questions/202212/01638805c7b9370.png" />。</p><p>3、设I=<img src="https://img2.meite.com/questions/202303/176414030ee674e.png" />交换积分次序,则有I=()</p><p>答 案:<img src="https://img2.meite.com/questions/202303/176414032f6347a.png" /></p><p>解 析:<img src="https://img2.meite.com/questions/202303/1764140336b7f20.png" />的积分区域<img src="https://img2.meite.com/questions/202303/176414034e05ef7.png" /><img src="https://img2.meite.com/questions/202303/17641403566791e.png" /><img src="https://img2.meite.com/questions/202303/176414035c360c7.png" /></p><p class="introTit">简答题</p><p>1、设抛物线Y=1-x<sup>2</sup>与x轴的交点为A、B,在抛物线与x轴所围成的平面区域内,以线段AB为下底作内接等腰梯形ABCD(如图2—1所示)。设梯形上底CD长为2x,面积为S(x)。<img src="https://img2.meite.com/questions/202408/1666bf0d55b56bb.png" /><br />(1)写出S(x)的表达式;<br />(2)求S(x)的最大值。  </p><p>答 案:<img src="https://img2.meite.com/questions/202408/1666bf0d5b04a0d.png" /></p>
相关题库