2024年成考专升本《高等数学一》每日一练试题09月07日

聚题库
09/07
<p class="introTit">单选题</p><p>1、下列函数在[1,e]上满足拉格朗日中值定理条件的是()。</p><ul><li>A:1/(1-x)</li><li>B:lnx</li><li>C:1/(1-lnx)</li><li>D:<img src='https://img2.meite.com/questions/202211/296385d30cd094d.png' /></li></ul><p>答 案:B</p><p>解 析:AC两项,在[1,e]不连续,在端点处存在间断点(无穷间断点);B项,lnx在[1,e]上有定义,所以在[1,e]上连续,且<img src="https://img2.meite.com/questions/202211/296385d3292f64f.png" />在(1,e)内有意义,所以lnx在(1,e)内可导;D项,定义域为[2,+∞],在[1,2)上无意义。</p><p>2、设y=<img src="https://img2.meite.com/questions/202211/16637492f0c908a.png" />,则dy=()。</p><ul><li>A:<img src='https://img2.meite.com/questions/202211/16637492f609990.png' /></li><li>B:<img src='https://img2.meite.com/questions/202211/16637492fa4702f.png' /></li><li>C:<img src='https://img2.meite.com/questions/202211/16637492fe6a03d.png' /></li><li>D:<img src='https://img2.meite.com/questions/202211/16637493040d110.png' /></li></ul><p>答 案:A</p><p>解 析:<img src="https://img2.meite.com/questions/202211/166374930d11eed.png" />。</p><p>3、已知f(xy,x-y)=<img src="https://img2.meite.com/questions/202303/17641400eb570c7.png" />则<img src="https://img2.meite.com/questions/202303/17641400fc3e15f.png" />等于()</p><ul><li>A:2</li><li>B:2x</li><li>C:2y</li><li>D:2x+2y</li></ul><p>答 案:A</p><p>解 析:因f(xy,x-y)=<img src="https://img2.meite.com/questions/202303/17641400eb570c7.png" />=<img src="https://img2.meite.com/questions/202303/176414014ddbd40.png" />故<img src="https://img2.meite.com/questions/202303/17641401605bb19.png" />从而<img src="https://img2.meite.com/questions/202303/176414016972068.png" /></p><p class="introTit">主观题</p><p>1、证明:当x>0时,<img src="https://img2.meite.com/questions/202211/176375e0551a913.png" /></p><p>答 案:证:设f(x)=(1+x)ln(1+x)-x,则f'(x)=ln(1+x)。当x>0时,f'(x)=ln(1+x)>0,故f(x)在(0,+∞)内单调增加,<br />且f(0)=0,故x>0时,f(x)>0,<br />即(1+x)Ln(1+x)-x>0,(1+x)ln(1+x)>x。</p><p>2、试证:当x>0时,有不等式<img src="https://img2.meite.com/questions/202212/03638affc6aa0f3.png" /></p><p>答 案:证:先证x>sinx(x>0)。设f(x)=x-sinx,则f(x)=1-cosx≥0(x>0),所以f(x)为单调递增函数,于是对x>0有f(x)>f(0)=0,即x-sinx>0,亦即x>sinx(x>0)。再证<img src="https://img2.meite.com/questions/202212/03638affee811dd.png" /><br />令<img src="https://img2.meite.com/questions/202212/03638afffc44f70.png" /><br />则<img src="https://img2.meite.com/questions/202212/03638b0009b99c4.png" />,所以g'(x)单调递增,又g'(x)=0,可知g'(x)>g'(0)=0(x>0),那么有g(x)单调递增,又g(0)=0,可知g(x)>g(0)=0(x>0),所以<img src="https://img2.meite.com/questions/202212/03638b0054d6d06.png" />即<img src="https://img2.meite.com/questions/202212/03638b0063d9343.png" /><br />综上可得:当x>0时,<img src="https://img2.meite.com/questions/202212/03638b007c4f31d.png" />。</p><p>3、在曲线<img src="https://img2.meite.com/questions/202212/01638815804b4d3.png" />上求一点M<sub>0</sub>,使得如图中阴影部分的面积S<sub>1</sub>与S<sub>2</sub>之和S最小。<img src="https://img2.meite.com/questions/202212/01638815b132ea0.png" /></p><p>答 案:解:设点M<sub>0</sub>的横坐标为x<sub>0</sub>,则有<img src="https://img2.meite.com/questions/202212/01638815de92308.png" />则<img src="https://img2.meite.com/questions/202212/01638815f1da54d.png" />S为x<sub>0</sub>的函数,将上式对x<sub>0</sub>求导得<img src="https://img2.meite.com/questions/202212/016388161216b07.png" />令S'=0,得<img src="https://img2.meite.com/questions/202212/01638816367b2e9.png" />,所以<img src="https://img2.meite.com/questions/202212/016388164ebc9e7.png" />由于只有唯一的驻点,所以<img src="https://img2.meite.com/questions/202212/0163881664ad3a9.png" />则点M<sub>0</sub>的坐标为<img src="https://img2.meite.com/questions/202212/016388167cc9784.png" />为所求。</p><p class="introTit">填空题</p><p>1、<img src="https://img2.meite.com/questions/202211/166374585f3b487.png" />=()。</p><p>答 案:2(e-1)</p><p>解 析:<img src="https://img2.meite.com/questions/202211/16637458663ea36.png" />。</p><p>2、过M<sub>0</sub>(1,-1,2)且垂直于平面2x-y+3z-1=0的直线方程为()。  </p><p>答 案:<img src="https://img2.meite.com/questions/202408/1566bdc168a7f4d.png" /></p><p>解 析:本题考查的知识点为直线方程的求解。 <img src="https://img2.meite.com/questions/202408/1566bdc16ee3f9c.png" />  </p><p>3、设x<sup>2</sup>为f(x)的一个原函数,则f(x)=_____。  </p><p>答 案:2x</p><p>解 析:<img src="https://img2.meite.com/questions/202408/1666bec73091318.png" /></p><p class="introTit">简答题</p><p>1、<img src="https://img2.meite.com/questions/202408/1666bef9eace5f8.png" />  </p><p>答 案:<img src="https://img2.meite.com/questions/202408/1666bef9f24ed4a.png" /></p>
相关题库