2024年成考专升本《高等数学一》每日一练试题09月04日
<p class="introTit">单选题</p><p>1、设球面方程为<img src="https://img2.meite.com/questions/202408/1666beee07cfa6d.png" />,则该球的球心坐标与半径分别为()。
</p><ul><li>A:(-1,2,-3);2</li><li>B:(-1,2,-3);4</li><li>C:(1,-2,3);2</li><li>D:(1,-2,3);4</li></ul><p>答 案:C</p><p>解 析:对照球面方程的基本形式可知<img src="https://img2.meite.com/questions/202408/1666beee497bc56.png" />,因此球心坐标为(1,-2,3),半径为2,故选C。</p><p>2、中心在(-1,2,-2)且与xOy平面相切的球面方程是()。</p><ul><li>A:<img src='https://img2.meite.com/questions/202212/0163881d5d44060.png' /></li><li>B:<img src='https://img2.meite.com/questions/202212/0163881d6b5c2ab.png' /></li><li>C:<img src='https://img2.meite.com/questions/202212/0163881d771dacb.png' /></li><li>D:<img src='https://img2.meite.com/questions/202212/0163881d7fbf100.png' /></li></ul><p>答 案:A</p><p>解 析:已知球心为(-1,2,-2),代入球面标准方程为<img src="https://img2.meite.com/questions/202212/0163881d920bbe5.png" />,又与xOy平面相切,则r=2。</p><p>3、曲线<img src="https://img2.meite.com/questions/202303/17641428768e28c.png" />与其过原点的切线及y轴所围面积为()
</p><ul><li>A:<img src='https://img2.meite.com/questions/202303/176414289f110e7.png' /></li><li>B:<img src='https://img2.meite.com/questions/202303/17641428a6b84fa.png' /></li><li>C:<img src='https://img2.meite.com/questions/202303/17641428acae8ee.png' /></li><li>D:<img src='https://img2.meite.com/questions/202303/17641428b1e166c.png' /></li></ul><p>答 案:A</p><p>解 析:设(x0,y0)为切点,则切线方程为<img src="https://img2.meite.com/questions/202303/17641428de828b2.png" />联立<img src="https://img2.meite.com/questions/202303/17641428eb5aa98.png" />得x0=1,y0=e,所以切线方程为y=ex,故所求面积为<img src="https://img2.meite.com/questions/202303/1764142916eb7e4.png" /></p><p class="introTit">主观题</p><p>1、求微分方程<img src="https://img2.meite.com/questions/202212/03638ac38e5fd44.png" />的通解。</p><p>答 案:解:对应的齐次方程为<img src="https://img2.meite.com/questions/202212/03638ac39bb126c.png" />。特征方程<img src="https://img2.meite.com/questions/202212/03638ac3abef614.png" />,特征根<img src="https://img2.meite.com/questions/202212/03638ac3bb18486.png" />齐次方程通解为<img src="https://img2.meite.com/questions/202212/03638ac3c81e1f0.png" />原方程特解为<img src="https://img2.meite.com/questions/202212/03638ac3d7442b3.png" />,代入原方程可得<img src="https://img2.meite.com/questions/202212/03638ac3ea0899f.png" />,因此<img src="https://img2.meite.com/questions/202212/03638ac3fe7cb5d.png" />。<br />方程通解为<img src="https://img2.meite.com/questions/202212/03638ac40c27e0d.png" /></p><p>2、求<img src="https://img2.meite.com/questions/202212/0163880fa464dfd.png" />。</p><p>答 案:解:<img src="https://img2.meite.com/questions/202212/0163880fb607a4d.png" /><img src="https://img2.meite.com/questions/202212/0163880fc85a8bd.png" />。</p><p>3、设f(x)是以T为周期的连续函数,a为任意常数,证明:<img src="https://img2.meite.com/questions/202212/01638810a04c178.png" />。</p><p>答 案:证:因为<img src="https://img2.meite.com/questions/202212/01638810b105867.png" />令x=T+t,做变量替换得<img src="https://img2.meite.com/questions/202212/01638810cade25f.png" />故<img src="https://img2.meite.com/questions/202212/01638810de0e205.png" /></p><p class="introTit">填空题</p><p>1、<img src="https://img2.meite.com/questions/202405/166645bc8980e33.png" />()
</p><p>答 案:<img src="https://img2.meite.com/questions/202405/166645bc90e8937.png" /></p><p>解 析:<img src="https://img2.meite.com/questions/202405/166645bc95a949d.png" /></p><p>2、<img src="https://img2.meite.com/questions/202211/306387238d474db.png" />=()。</p><p>答 案:<img src="https://img2.meite.com/questions/202211/30638723985fdf5.png" /></p><p>解 析:<img src="https://img2.meite.com/questions/202211/30638723ad2d65d.png" /></p><p>3、幂级数<img src="https://img2.meite.com/questions/202303/176414046fa95c8.png" />的收敛半径为()</p><p>答 案:3</p><p>解 析:所给幂级数通项为<img src="https://img2.meite.com/questions/202303/176414049a92cf3.png" />则<img src="https://img2.meite.com/questions/202303/17641404aae13b4.png" /><img src="https://img2.meite.com/questions/202303/17641404b621a4a.png" />所以收敛半径R=3</p><p class="introTit">简答题</p><p>1、<img src="https://img2.meite.com/questions/202408/1566bdc1d518336.png" />
</p><p>答 案:<img src="https://img2.meite.com/questions/202408/1566bdc1e06d2bd.png" /></p><p>解 析:本题考查的知识点为求二元隐函数的偏导数。 <img src="https://img2.meite.com/questions/202408/1566bdc1e7d3687.png" />
</p>