2024年成考专升本《高等数学二》每日一练试题09月03日
<p class="introTit">判断题</p><p>1、若<img src="https://img2.meite.com/questions/202307/1364af5780970e6.png" />,则<img src="https://img2.meite.com/questions/202307/1364af578624075.png" />。()
</p><p>答 案:错</p><p>解 析:<img src="https://img2.meite.com/questions/202212/06638ef8852e1bd.png" />所以<img src="https://img2.meite.com/questions/202212/06638ef88b66bc1.png" /> </p><p class="introTit">单选题</p><p>1、若<img src="https://img2.meite.com/questions/202212/06638ef96cb457a.png" />且f(b)>0,则在(a,b)内必有().</p><ul><li>A:f(x)>0</li><li>B:f(x)<0</li><li>C:f(x)=0</li><li>D:f(x)符号不定</li></ul><p>答 案:A</p><p>解 析:在(a,b),f'(x)<0,f(x)单调减少,故f(x)>f(b),又f(b)>0,所以f(x)>0.</p><p>2、已知函数f(x)的导函数f'(x)=3x<sup>2</sup>-x-1,则曲线y=f(x)在x=2处切线的斜率是().</p><ul><li>A:3</li><li>B:5</li><li>C:9</li><li>D:11</li></ul><p>答 案:C</p><p>解 析:曲线y=f(x)在x=2处切线的斜率即为f(x)在x=2时的导数值,即f‘’(2)=9.</p><p class="introTit">主观题</p><p>1、计算<img src="https://img2.meite.com/questions/202212/06638ee0d87d280.png" /></p><p>答 案:解:<img src="https://img2.meite.com/questions/202212/06638ee0e4bb86f.png" /></p><p>2、计算<img src="https://img2.meite.com/questions/202212/07639039f5ae5b6.png" />.</p><p>答 案:解:<img src="https://img2.meite.com/questions/202212/0763903a0ad1fb5.png" /><img src="https://img2.meite.com/questions/202212/0763903a1c62dae.png" />.</p><p class="introTit">填空题</p><p>1、设y=ln(a<sup>2</sup>+x<sup>2</sup>),则dy=______。
</p><p>答 案:<img src="https://img2.meite.com/questions/202408/1966c2ae4659881.png" /></p><p>解 析:先求复合函数的导数,再求dy,<img src="https://img2.meite.com/questions/202408/1966c2ae4ae4277.png" /></p><p>2、设<img src="https://img2.meite.com/questions/202212/07638fefc50515b.png" />,则<img src="https://img2.meite.com/questions/202212/07638ff012ab406.png" />().</p><p>答 案:<img src="https://img2.meite.com/questions/202212/07638feffdde4ed.png" /></p><p>解 析:<img src="https://img2.meite.com/questions/202212/07638ff02884251.png" /></p><p class="introTit">简答题</p><p>1、计算<img src="https://img2.meite.com/questions/202204/256266681e38a4b.png" /></p><p>答 案:<img src="https://img2.meite.com/questions/202204/2562666955ecf07.png" /><img src="https://img2.meite.com/questions/202204/256266696a949be.png" /></p><p>2、求曲线y=x<sup>2</sup>与该曲线在x=a(a>0)处的切线与x轴所围的平面图形的面积.</p><p>答 案:如图所示,在x=a出切线的斜率为<img src="https://img2.meite.com/questions/202204/2462651db124c09.png" />切线方程为<img src="https://img2.meite.com/questions/202204/2462651dc16aa93.png" /><img src="https://img2.meite.com/questions/202204/2462651dce2d620.png" /><img src="https://img2.meite.com/questions/202204/2462651dd95fff2.png" /></p>