2024年成考专升本《高等数学一》每日一练试题09月02日

聚题库
09/02
<p class="introTit">单选题</p><p>1、<img src="https://img2.meite.com/questions/202408/1666beb05096997.png" />()。  </p><ul><li>A:<img src='https://img2.meite.com/questions/202408/1666beb0555c4d4.png' /></li><li>B:<img src='https://img2.meite.com/questions/202408/1666beb05ac8911.png' /></li><li>C:<img src='https://img2.meite.com/questions/202408/1666beb05f86b72.png' /></li><li>D:<img src='https://img2.meite.com/questions/202408/1666beb064191df.png' /></li></ul><p>答 案:D</p><p>解 析:<img src="https://img2.meite.com/questions/202408/1666beb069f3cfa.png" /></p><p>2、设<img src="https://img2.meite.com/questions/202211/16637450128cf08.png" />,则dy=()。</p><ul><li>A:<img src='https://img2.meite.com/questions/202211/166374501ad3321.png' /></li><li>B:<img src='https://img2.meite.com/questions/202211/166374501f9a609.png' /></li><li>C:<img src='https://img2.meite.com/questions/202211/166374502426d14.png' /></li><li>D:<img src='https://img2.meite.com/questions/202211/16637450289b8c7.png' /></li></ul><p>答 案:B</p><p>解 析:<img src="https://img2.meite.com/questions/202211/166374503177e0e.png" />。</p><p>3、设<img src="https://img2.meite.com/questions/202211/176375affc9e8fd.png" />,则<img src="https://img2.meite.com/questions/202211/176375b0105d066.png" />()。</p><ul><li>A:2xy+y<sup>2</sup>8.x<sup>2</sup>+2xy<br /></li><li>C:4xy</li><li>D:x<sup>2</sup>+y<sup>2</sup></li></ul><p>答 案:A</p><p>解 析:对二元函数z,求<img src="https://img2.meite.com/questions/202211/176375b03781605.png" />时,将y看作常量,则<img src="https://img2.meite.com/questions/202211/176375b047cade5.png" />。</p><p class="introTit">主观题</p><p>1、求微分方程y''-9y=0的通解</p><p>答 案:解:特征方程为r<sup>2</sup>-9=0,其特征根为r<sub>1</sub>=-3,r<sub>2</sub>=3,故通解为<img src="https://img2.meite.com/questions/202211/176375ab5f15a0c.png" />(C1,C2为任意常数)</p><p>2、求微分方程<img src="https://img2.meite.com/questions/202211/176375dfbff1b24.png" />的通解.</p><p>答 案:解:原方程对应的齐次方程为<img src="https://img2.meite.com/questions/202211/176375dfd275b10.png" />。特征方程为,r<sup>2</sup>+3r+2=0,特征值为r<sub>1</sub>=-2,r<sub>2</sub>=-1。齐次方程的通解为y=C<sub>1</sub>e<sup>-2x</sup>+C<sub>2</sub>e<sup>-x</sup>。<br />设特解为y*=Aex,代入原方程有6A=6,得A=1。<br />所以原方程的通解为y=C<sub>1</sub>e<sup>-2x</sup>+C<sub>2</sub>e<sup>-X</sup>+e<sup>x</sup>(C1,C2为任意常数)。</p><p>3、设切线l是曲线y=x<sup>2</sup>+3在点(1,4)处的切线,求由该曲线,切线,及y轴围成的平面图形的面积S。</p><p>答 案:解:y=x<sup>2</sup>+3,=2x。切点(1,4),y'(1)=2.故切线l的方程为y-4=2(x-1),即<img src="https://img2.meite.com/questions/202211/166374af856aae2.png" /></p><p class="introTit">填空题</p><p>1、<img src="https://img2.meite.com/questions/202408/1566bdc140aa635.png" />  </p><p>答 案:0</p><p>解 析:本题考查的知识点为定积分的性质。 <img src="https://img2.meite.com/questions/202408/1566bdc14563c4e.png" />  </p><p>2、<img src="https://img2.meite.com/questions/202408/1666bebcd2f3d4f.png" />  </p><p>答 案:x<sup>3</sup>+x</p><p>解 析:<img src="https://img2.meite.com/questions/202408/1666bebcd83449f.png" /></p><p>3、若<img src="https://img2.meite.com/questions/202212/0163885c95d64f9.png" />,则幂级数<img src="https://img2.meite.com/questions/202212/0163885ca31740f.png" />的收敛半径为()。</p><p>答 案:2</p><p>解 析:若<img src="https://img2.meite.com/questions/202212/0163885cb0df988.png" />,则收敛半径<img src="https://img2.meite.com/questions/202212/0163885cbf0329e.png" />,<img src="https://img2.meite.com/questions/202212/0163885ccc7c05d.png" />,所以R=2。</p><p class="introTit">简答题</p><p>1、<img src="https://img2.meite.com/questions/202408/1666bf0d2601008.png" />  </p><p>答 案:<img src="https://img2.meite.com/questions/202408/1666bf0d2a9f522.png" /></p>
相关题库