2024年成考专升本《高等数学一》每日一练试题08月31日

聚题库
08/31
<p class="introTit">单选题</p><p>1、设<img src="https://img2.meite.com/questions/202212/01638842187ad26.png" />,则dz=()。</p><ul><li>A:2xdx+dy</li><li>B:x<sup>2</sup>dx+ydy</li><li>C:2xdx</li><li>D:xdx+dy</li></ul><p>答 案:A</p><p>解 析:<img src="https://img2.meite.com/questions/202212/01638842b3a7abe.png" /><img src="https://img2.meite.com/questions/202212/01638842bf5ef57.png" />。</p><p>2、<img src="https://img2.meite.com/questions/202408/1666bec66d29363.png" />()。  </p><ul><li>A:0</li><li>B:<img src='https://img2.meite.com/questions/202408/1666bec671b9a76.png' /></li><li>C:<img src='https://img2.meite.com/questions/202408/1666bec675674b1.png' /></li><li>D:<img src='https://img2.meite.com/questions/202408/1666bec67966fa9.png' /></li></ul><p>答 案:C</p><p>解 析:<img src="https://img2.meite.com/questions/202408/1666bec67de5a26.png" /><img src="https://img2.meite.com/questions/202408/1666bec681de17e.png" /></p><p>3、<img src="https://img2.meite.com/questions/202212/03638af8271f344.png" />=()。</p><ul><li>A:4+3ln2</li><li>B:2+3ln2</li><li>C:4-3ln2</li><li>D:2-3ln2</li></ul><p>答 案:D</p><p>解 析:<img src="https://img2.meite.com/questions/202212/03638af8353f8f9.png" />。</p><p class="introTit">主观题</p><p>1、求函数<img src="https://img2.meite.com/questions/202212/03638aefd8a9e48.png" />的凹凸性区间及拐点.</p><p>答 案:解:函数的定义域为<img src="https://img2.meite.com/questions/202212/03638aefeeac301.png" />。<img src="https://img2.meite.com/questions/202212/03638af0026d7fa.png" />.令y″=0,得x=6;不可导点为x=-3。故拐点为(6,<img src="https://img2.meite.com/questions/202212/03638af01a2501a.png" />),(-∞,-3)和(-3,6)为凸区间,(6,+∞)为凹区间。</p><p>2、已知x=sint,y=cost-sint<sup>2</sup>,求<img src="https://img2.meite.com/questions/202211/306387030d765c8.png" />。</p><p>答 案:解:<img src="https://img2.meite.com/questions/202211/306387031a695cb.png" />,<img src="https://img2.meite.com/questions/202211/306387032915935.png" />,<img src="https://img2.meite.com/questions/202211/306387033a2cbf4.png" />,故<img src="https://img2.meite.com/questions/202211/306387034986f35.png" />。</p><p>3、设<img src="https://img2.meite.com/questions/202211/166374ab053a051.png" />,求y'.</p><p>答 案:解:<img src="https://img2.meite.com/questions/202211/166374acf55bc71.png" /></p><p class="introTit">填空题</p><p>1、函数<img src="https://img2.meite.com/questions/202211/306386d13806c11.png" />的极大值点的坐标是()。</p><p>答 案:(-1,-2)</p><p>解 析:<img src="https://img2.meite.com/questions/202211/306386d15421630.png" />,令y'=0,得<img src="https://img2.meite.com/questions/202211/306386d1730c4fc.png" />.当x<-1时,y'>0,函数单调增加;当<img src="https://img2.meite.com/questions/202211/306386d1ac20afc.png" />时,y'<0,函数单调减少;当x>1时,y'>0,函数单调增加.故当x=-1时,函数取得极大值为-2,即极大值坐标为(-1,-2)。</p><p>2、幂级数<img src="https://img2.meite.com/questions/202212/0163885c51c8bb3.png" />的收敛半径为()。</p><p>答 案:1</p><p>解 析:<img src="https://img2.meite.com/questions/202212/0163885c5fa0d30.png" />是最基本的幂级数之一,a<sub>n</sub>=1,<img src="https://img2.meite.com/questions/202212/0163885c84c560b.png" />,故收敛半径为1。</p><p>3、<img src="https://img2.meite.com/questions/202211/176375a30c09bc6.png" />()。</p><p>答 案:arctanx+C</p><p>解 析:由不定积分基本公式可知<img src="https://img2.meite.com/questions/202211/176375a31d1eca0.png" /></p><p class="introTit">简答题</p><p>1、<img src="https://img2.meite.com/questions/202408/1666beb2986338f.png" />  </p><p>答 案:<img src="https://img2.meite.com/questions/202408/1666beb29d3f460.png" /></p>
相关题库