2024年成考高起点《数学(理)》每日一练试题08月30日
<p class="introTit">单选题</p><p>1、设f(x)是以7为周期的偶函数,且f(-2)=5,则f(9)=()。</p><ul><li>A:-5</li><li>B:5</li><li>C:-10</li><li>D:10</li></ul><p>答 案:B</p><p>解 析:因为f(x)是偶函数,所以f(2)=f(-2)=5,又因为f(x)是以7为周期的函数,则f(9)=f(7+2)=f(2)=5。答案为B。</p><p>2、<img src="https://img2.meite.com/questions/202408/1566bdacadbf6ac.png" />()。</p><ul><li>A:2</li><li>B:4</li><li>C:<img src='https://img2.meite.com/questions/202408/1566bdacb3aaec2.png' /></li><li>D:<img src='https://img2.meite.com/questions/202408/1566bdacb75156a.png' /></li></ul><p>答 案:B</p><p>3、<img src="https://img2.meite.com/questions/202408/1666bef039971ff.png" />()。</p><ul><li>A:1</li><li>B:b</li><li>C:log<sub>a</sub>b</li><li>D:log<sub>b</sub>a</li></ul><p>答 案:D</p><p>解 析:由已知,nlog<sub>b</sub>a=log<sub>b</sub>(log<sub>b</sub>a),log<sub>b</sub>a<sup>n</sup>=log<sub>b</sub>(logba), 所以a<sup>n</sup>=log<sub>b</sub>a。
</p><p>4、已知正三棱柱的底面积等于<img src="https://img2.meite.com/questions/202408/1666bef932f1e03.png" />侧面积等于30,则此正三棱柱的体积为()。</p><ul><li>A:<img src='https://img2.meite.com/questions/202408/1666bef93baee22.png' /></li><li>B:<img src='https://img2.meite.com/questions/202408/1666bef93eb74ac.png' /></li><li>C:<img src='https://img2.meite.com/questions/202408/1666bef941a23ca.png' /></li><li>D:<img src='https://img2.meite.com/questions/202408/1666bef94575c90.png' /></li></ul><p>答 案:B</p><p>解 析:设正三梭柱的底面的边长为a,底面积为<img src="https://img2.meite.com/questions/202408/1666bef95124238.png" /> 设正三棱柱的高为h,侧面积为3×a×h=3×2×h=30,得h=5.则此正三棱柱的体积为底面积×高=<img src="https://img2.meite.com/questions/202408/1666bef95691d2b.png" /></p><p class="introTit">主观题</p><p>1、设a为实数,且tanα和tanβ是方程ax<sup>2</sup>+(2a-3)x+(a-2)=0的两个实根,求tan(α+β)的最小值。</p><p>答 案:由已知得<img src="https://img2.meite.com/questions/202408/1666bef0e318894.png" /><img src="https://img2.meite.com/questions/202408/1666bef0e531f77.png" /></p><p>2、已知抛物线C:y<sup>2</sup>=2px(p>0)的焦点到准线的距离为1。
(I)求C的方程;
(Ⅱ)若A(1,m)(m>0)为C上一点,O为坐标原点,求C上另一点B的坐标,使得OA⊥OB</p><p>答 案:(I)由题意,该抛物线的焦点到准线的距离为<img src="https://img2.meite.com/questions/202404/1966222edee972e.png" />
所以抛物线C的方程为<img src="https://img2.meite.com/questions/202404/1966222ee6c66f9.png" />
(Ⅱ)因A(l,m)(m>0)为C上一点,故有m<sup>2</sup>=2,
可得<img src="https://img2.meite.com/questions/202404/1966222ef5c5007.png" />因此A点坐标为<img src="https://img2.meite.com/questions/202404/1966222efb949fc.png" />
设B点坐标为<img src="https://img2.meite.com/questions/202404/1966222f0a5cbbb.png" />则<img src="https://img2.meite.com/questions/202404/1966222f11e9340.png" />
因为<img src="https://img2.meite.com/questions/202404/1966222f17c1b05.png" />则有<img src="https://img2.meite.com/questions/202404/1966222f1dce70a.png" />
即<img src="https://img2.meite.com/questions/202404/1966222f27533ea.png" />解得x0=4
所以B点的坐标为<img src="https://img2.meite.com/questions/202404/1966222f308351e.png" />
</p><p>3、已知设△ABC的三边长为a、b、C,2sin<sup>2</sup>A=3(sin<sup>2</sup>B+sin<sup>2</sup>C)且cos2A+3cosA+3cos(B-C)=1,求证:a:b:c=<img src="https://img2.meite.com/questions/202408/1566bda946846fe.png" />:1:1。</p><p>答 案:因所证的是△ABC三边的比,所以可将题中角的关系式转化为边的关系式,需用正弦定理关于题中的余弦关系式可通过恒等变形化为正弦函数的关系式。 ∵2sin<sup>2</sup>A=3(sin<sup>2</sup>B+sin<sup>2</sup>C)…① 由正弦定理得,2a<sup>2</sup>=3(b<sup>2</sup>+c<sup>2</sup>)…② <br />∵cos2A+3cosA+3cos(B-C)=1 <br />∴3[cosA+cos(B-C)]=1-cos2A.<br />∵A=180°-(B+C) <br />∴3[-cos(B+C)+cos(B-C)]=2sin<sup>2</sup>A.
由两角和与差的余弦公式得 <br />6sinBsinB=2sin<sup>2</sup>A…③ <br />由①③得,2sinBsinC=sin<sup>2</sup>B+sin<sup>2</sup>C.<br />sin<sup>2</sup>B-2sinBsinC+sin<sup>2</sup>C=0 <br />(sinB-sinC)<sup>2</sup>=0 <br />sinB= sinC.<br />由正弦定理得<img src="https://img2.meite.com/questions/202408/1566bda958695de.png" /><img src="https://img2.meite.com/questions/202408/1566bda95ccd574.png" /><br /><br />∴a:b=<img src="https://img2.meite.com/questions/202408/1566bda9616900d.png" />:1 <br />于是a:b:c=<img src="https://img2.meite.com/questions/202408/1566bda967dbd1c.png" />:1:1。
</p><p>4、在正四棱柱ABCD-A'B'C'D'中,<img src="https://img2.meite.com/questions/202303/28642255fa50503.png" />
(Ⅰ)写出向量<img src="https://img2.meite.com/questions/202303/286422561b1d145.png" />关于基底{a,b,c}的分解式
(Ⅱ)求证:<img src="https://img2.meite.com/questions/202303/286422563d58cde.png" />
(Ⅲ)求证:<img src="https://img2.meite.com/questions/202303/28642256478aacd.png" />
</p><p>答 案:(Ⅰ)由题意知(如图所示) <img src="https://img2.meite.com/questions/202303/286422566983935.png" />
<img src="https://img2.meite.com/questions/202303/28642256740213a.png" /><img src="https://img2.meite.com/questions/202303/286422567c06c5d.png" />
(Ⅱ)<img src="https://img2.meite.com/questions/202303/2864225695c5fbd.png" /><img src="https://img2.meite.com/questions/202303/286422569cdc533.png" />
(Ⅲ)<img src="https://img2.meite.com/questions/202303/28642256a537b6d.png" />
由已知,a,c是正四棱柱的棱,a,b,c两两垂直
<img src="https://img2.meite.com/questions/202303/28642256d1c4379.png" />
</p><p class="introTit">填空题</p><p>1、已知函数y=a<sup>2</sup>+bx+c的图像是以(6,-12)为顶点的抛物线,并且与x轴的一个交点坐标是(8,0),则a=(),b=(),c=()</p><p>答 案: 3;-36;96
</p><p>解 析:根据顶点坐标是(6,-12),设y=a(x-6)<sup>2</sup>-12(8,0)代入得:0=a*(8-6)<sup>2</sup>-12得到a=3<br />即y=3(x-6)<sup>2</sup>-12=3x<sup>2</sup>-36x+96<br />故a=3,b=-36,c=96</p><p>2、<img src="https://img2.meite.com/questions/202408/1566bdaee85f697.png" />的值域是______。
</p><p>答 案:<img src="https://img2.meite.com/questions/202408/1566bdaef1d0ca9.png" /></p><p>解 析:当sin2x=-1时,y最小值<img src="https://img2.meite.com/questions/202408/1566bdaef6ee822.png" />当 sin2x=1时,<img src="https://img2.meite.com/questions/202408/1566bdaefd784fb.png" />
</p>