2024年成考专升本《高等数学一》每日一练试题08月30日

聚题库
08/30
<p class="introTit">单选题</p><p>1、当x→0时,与3x<sup>2</sup>+2x<sup>3</sup>等价的无穷小量是()。</p><ul><li>A:2x<sup>3</sup></li><li>B:3x<sup>2</sup></li><li>C:x<sup>2</sup></li><li>D:x<sup>3</sup></li></ul><p>答 案:B</p><p>解 析:由于当x→0时,3x<sup>2</sup>为x的二阶无穷小量,2x<sup>3</sup>为x的三阶无穷小量,因此3x<sup>2</sup>+2x<sup>3</sup>为x的二阶无穷小量,即<img src="https://img2.meite.com/questions/202212/03638af648102e7.png" />。</p><p>2、曲线<img src="https://img2.meite.com/questions/202303/176413e20ef1385.png" />与其过原点的切线及y轴所围面积为()</p><ul><li>A:<img src='https://img2.meite.com/questions/202303/176413e22131363.png' /></li><li>B:<img src='https://img2.meite.com/questions/202303/176413e228b6826.png' /></li><li>C:<img src='https://img2.meite.com/questions/202303/176413e22d7bf72.png' /></li><li>D:<img src='https://img2.meite.com/questions/202303/176413e233b0b84.png' /></li></ul><p>答 案:A</p><p>解 析:设<img src="https://img2.meite.com/questions/202303/176413e24ca4a55.png" />为切点,则切线方程为<img src="https://img2.meite.com/questions/202303/176413e25bd7507.png" />联立<img src="https://img2.meite.com/questions/202303/176413e26a09694.png" />得<img src="https://img2.meite.com/questions/202303/176413e279016e2.png" />所以切线方程为y=ex,故所求面积为<img src="https://img2.meite.com/questions/202303/176413e29f7d093.png" /></p><p>3、微分方程<img src="https://img2.meite.com/questions/202211/16637454177b20a.png" />的阶数为()。</p><ul><li>A:1</li><li>B:2</li><li>C:3</li><li>D:4</li></ul><p>答 案:A</p><p>解 析:微分方程<img src="https://img2.meite.com/questions/202211/166374541f0f375.png" />所含有未知函数y的导数最高阶数为1,为一阶微分方程。</p><p class="introTit">主观题</p><p>1、设<img src="https://img2.meite.com/questions/202211/166374afc293c27.png" />,求<img src="https://img2.meite.com/questions/202211/166374afcf46756.png" />。</p><p>答 案:解:<img src="https://img2.meite.com/questions/202211/166374afe188e20.png" /></p><p>2、试证:当x>0时,有不等式<img src="https://img2.meite.com/questions/202212/03638affc6aa0f3.png" /></p><p>答 案:证:先证x>sinx(x>0)。设f(x)=x-sinx,则f(x)=1-cosx≥0(x>0),所以f(x)为单调递增函数,于是对x>0有f(x)>f(0)=0,即x-sinx>0,亦即x>sinx(x>0)。再证<img src="https://img2.meite.com/questions/202212/03638affee811dd.png" /><br />令<img src="https://img2.meite.com/questions/202212/03638afffc44f70.png" /><br />则<img src="https://img2.meite.com/questions/202212/03638b0009b99c4.png" />,所以g'(x)单调递增,又g'(x)=0,可知g'(x)>g'(0)=0(x>0),那么有g(x)单调递增,又g(0)=0,可知g(x)>g(0)=0(x>0),所以<img src="https://img2.meite.com/questions/202212/03638b0054d6d06.png" />即<img src="https://img2.meite.com/questions/202212/03638b0063d9343.png" /><br />综上可得:当x>0时,<img src="https://img2.meite.com/questions/202212/03638b007c4f31d.png" />。</p><p>3、求<img src="https://img2.meite.com/questions/202212/0163880ee1403c1.png" />。</p><p>答 案:解:<img src="https://img2.meite.com/questions/202212/0163880ef887164.png" /><img src="https://img2.meite.com/questions/202212/0163880f0a467da.png" />。</p><p class="introTit">填空题</p><p>1、<img src="https://img2.meite.com/questions/202408/1666beb1b50b65f.png" />  </p><p>答 案:<img src="https://img2.meite.com/questions/202408/1666beb1b99c97f.png" /></p><p>解 析:<img src="https://img2.meite.com/questions/202408/1666beb1c11a533.png" /></p><p>2、设f'(x<sub>0</sub>)=2,f(x<sub>0</sub>)=0,则<img src="https://img2.meite.com/questions/202211/306386b42c6eace.png" />=()。</p><p>答 案:-2</p><p>解 析:<img src="https://img2.meite.com/questions/202211/306386b44ade6e0.png" />。</p><p>3、过坐标原点且与平面2x-y+z+1=0平行的平面方程为______。  </p><p>答 案:2x-y+z=0</p><p>解 析:已知平面的法线向量n<sub>1</sub>=(2,-1,1),所求平面与已知平面平行,可设所求平面方程为2x-y+z+D=0,将x=0,y=0,z=0代入上式,可得D=0,因此所求平面方程为2x-y+z=0。</p><p class="introTit">简答题</p><p>1、<img src="https://img2.meite.com/questions/202408/1666beb2cfeee5b.png" />  </p><p>答 案:积分区域D为半圆环域,利用极坐标计算此二重积分较方便。在极坐标系下,X<sup>2</sup>+Y<sup>2</sup>=1可以化为r=1;x<sup>2</sup>+y<sup>2</sup>=4可以化为r=2。因此区域D可以表示为<img src="https://img2.meite.com/questions/202408/1666beb2dbc4838.png" />因此<img src="https://img2.meite.com/questions/202408/1666beb2e1a0f0d.png" /><img src="https://img2.meite.com/questions/202408/1666beb2e60ca33.png" /></p>
相关题库