2024年成考专升本《高等数学二》每日一练试题08月30日
<p class="introTit">判断题</p><p>1、若<img src="https://img2.meite.com/questions/202307/1364af5780970e6.png" />,则<img src="https://img2.meite.com/questions/202307/1364af578624075.png" />。()
</p><p>答 案:错</p><p>解 析:<img src="https://img2.meite.com/questions/202212/06638ef8852e1bd.png" />所以<img src="https://img2.meite.com/questions/202212/06638ef88b66bc1.png" /> </p><p class="introTit">单选题</p><p>1、<img src="https://img2.meite.com/questions/202408/2066c3f0cd27688.png" />()。
</p><ul><li>A:3(x+y)</li><li>B:3(x+y)<sup>2</sup></li><li>C:6(x+y)</li><li>D:6(x+y)<sup>2</sup></li></ul><p>答 案:C</p><p>2、设函数f(x)=<img src="https://img2.meite.com/questions/202212/05638d904cb9434.png" />+e,f'(1)=().</p><ul><li>A:2+e</li><li>B:1+e</li><li>C:<img src='https://img2.meite.com/questions/202212/05638d90702e13c.png' /></li><li>D:<img src='https://img2.meite.com/questions/202212/05638d9079d39fe.png' /></li></ul><p>答 案:C</p><p>解 析:<img src="https://img2.meite.com/questions/202212/05638d90860c39b.png" />,<img src="https://img2.meite.com/questions/202212/05638d9090ba841.png" />.</p><p class="introTit">主观题</p><p>1、求一个正弦曲线与x轴所围成图形的面积(只计算一个周期的面积).</p><p>答 案:解:取从0~2π的正弦曲线如图<img src="https://img2.meite.com/questions/202212/0763903d20af21a.png" />,设所围图形面积为S,则<img src="https://img2.meite.com/questions/202212/0763903cddd57ab.png" /><img src="https://img2.meite.com/questions/202212/0763903ce9b5e60.png" /><img src="https://img2.meite.com/questions/202212/0763903cf62e7d0.png" /><img src="https://img2.meite.com/questions/202212/0763903d056e610.png" />注意到图形面积是对称的,可直接得出<img src="https://img2.meite.com/questions/202212/0763903d341c7a8.png" />。</p><p>2、求函数<img src="https://img2.meite.com/questions/202212/0863914cd03d2f4.png" />在条件x+2y=7下的极值.</p><p>答 案:解:设<img src="https://img2.meite.com/questions/202212/0863914cf02a1ed.png" />令<img src="https://img2.meite.com/questions/202212/0863914d0ad7119.png" /><img src="https://img2.meite.com/questions/202212/0863914d1281819.png" />由式(1)与式(2)解得5x=4y代入式(3)得x=2,y=<img src="https://img2.meite.com/questions/202212/0863914d24d7b42.png" />,所以<img src="https://img2.meite.com/questions/202212/0863914d2e8e231.png" />为极值.</p><p class="introTit">填空题</p><p>1、设函数z=x<sup>2</sup>e<sup>y</sup>,则全微分dz=().</p><p>答 案:2xe<sup>y</sup>dx+x<sup>2</sup>e<sup>y</sup>dy</p><p>解 析:<img src="https://img2.meite.com/questions/202212/05638d53a3cc0c0.png" />,故<img src="https://img2.meite.com/questions/202212/05638d53b2391cb.png" />.</p><p>2、设函数<img src="https://img2.meite.com/questions/202212/07638fec6e8db94.png" />,且f(u)可导,则dy=().</p><p>答 案:<img src="https://img2.meite.com/questions/202212/07638fec8829d71.png" /></p><p>解 析:因为<img src="https://img2.meite.com/questions/202212/07638fec9aa2838.png" />,所以<img src="https://img2.meite.com/questions/202212/07638feca9ab2d8.png" /></p><p class="introTit">简答题</p><p>1、<img src="https://img2.meite.com/questions/202408/1966c2af96209cf.png" />
</p><p>答 案:本题考查的知识点是条件极值的计算。 <img src="https://img2.meite.com/questions/202408/1966c2afd6856e8.png" />
<img src="https://img2.meite.com/questions/202408/1966c2afdc5d5dd.png" />
</p><p>解 析:<img src="https://img2.meite.com/questions/202408/1966c2afe144185.png" /></p><p>2、计算<img src="https://img2.meite.com/questions/202303/076406da7743065.png" />
</p><p>答 案:<img src="https://img2.meite.com/questions/202303/076406e36bd4a94.png" /></p>