2024年成考专升本《高等数学一》每日一练试题08月29日

聚题库
08/29
<p class="introTit">单选题</p><p>1、设y<sub>1</sub>、y<sub>2</sub>是二阶常系数线性齐次方程<img src="https://img2.meite.com/questions/202212/0163886ae3f2fde.png" />的两个特解,C<sub>1</sub>、C<sub>2</sub>为两个任意常数,则下列命题中正确的是()。</p><ul><li>A:<img src='https://img2.meite.com/questions/202212/0163886b0926a4b.png' />为该方程的通解</li><li>B:<img src='https://img2.meite.com/questions/202212/0163886b1b6e4b2.png' />不可能是该方程的通解</li><li>C:<img src='https://img2.meite.com/questions/202212/0163886b25e2368.png' />为该方程的解</li><li>D:<img src='https://img2.meite.com/questions/202212/0163886b306966b.png' />不是该方程的解</li></ul><p>答 案:C</p><p>解 析:由线性方程解的结构定理知<img src="https://img2.meite.com/questions/202212/0163886b3e67058.png" />为该方程的解,题中没说明y<sub>1</sub>、y<sub>2</sub>是否线性无关,无法判断<img src="https://img2.meite.com/questions/202212/0163886b5f7957c.png" />是否为通解。</p><p>2、<img src="https://img2.meite.com/questions/202408/1666bef9139bf54.png" />()。  </p><ul><li>A:绝对收敛</li><li>B:条件收敛</li><li>C:发散</li><li>D:收敛性不能判定</li></ul><p>答 案:A</p><p>解 析:<img src="https://img2.meite.com/questions/202408/1666bef91a2cab6.png" /><img src="https://img2.meite.com/questions/202408/1666bef91e2c5da.png" /></p><p>3、微分方程<img src="https://img2.meite.com/questions/202211/16637493be1a8d7.png" />有特解y=()。</p><ul><li>A:6x</li><li>B:3x</li><li>C:2x</li><li>D:x</li></ul><p>答 案:A</p><p>解 析:<img src="https://img2.meite.com/questions/202211/16637493cdcc28e.png" />等式两边分别积分<img src="https://img2.meite.com/questions/202211/16637493d5e79a1.png" />,得y=6x+C,因此有特解6x。</p><p class="introTit">主观题</p><p>1、求y'+<img src="https://img2.meite.com/questions/202212/03638abf7b42c03.png" />=1的通解.</p><p>答 案:解:<img src="https://img2.meite.com/questions/202212/03638abf8ac5f6c.png" /></p><p>2、已知当x→0时,<img src="https://img2.meite.com/questions/202211/2963856d1f10115.png" />是等价无穷小量,求常数a的值。</p><p>答 案:解:因为当x→0时,<img src="https://img2.meite.com/questions/202211/2963856d36e0130.png" />是等价无穷小量,所以有<img src="https://img2.meite.com/questions/202211/2963856d485d2ef.png" />则<img src="https://img2.meite.com/questions/202211/2963856d5c23a0c.png" />解得a=2。</p><p>3、求幂级数<img src="https://img2.meite.com/questions/202212/01638866f4768e0.png" />的收敛区间(不考虑端点)。</p><p>答 案:解:<img src="https://img2.meite.com/questions/202212/016388670825645.png" />,由<img src="https://img2.meite.com/questions/202212/016388671783b9a.png" />可解得<img src="https://img2.meite.com/questions/202212/0163886729e6ad7.png" />,故所给级数收敛区间为<img src="https://img2.meite.com/questions/202212/016388673daf2d7.png" />。</p><p class="introTit">填空题</p><p>1、<img src="https://img2.meite.com/questions/202211/296385663fd47de.png" />()。</p><p>答 案:<img src="https://img2.meite.com/questions/202211/296385664b18199.png" /></p><p>解 析:<img src="https://img2.meite.com/questions/202211/296385665d40f4a.png" /></p><p>2、<img src="https://img2.meite.com/questions/202408/1666bf05e527c81.png" />  </p><p>答 案:<img src="https://img2.meite.com/questions/202408/1666bf05e91163b.png" /></p><p>解 析:<img src="https://img2.meite.com/questions/202408/1666bf05ece4a1d.png" /></p><p>3、设函数<img src="https://img2.meite.com/question/import/06537860ca385f6be4c6d3330d632478.png" />在x=0处连续,则a=()。</p><p>答 案:0</p><p class="introTit">简答题</p><p>1、<img src="https://img2.meite.com/questions/202408/1666bf068c96158.png" />  </p><p>答 案:<img src="https://img2.meite.com/questions/202408/1666bf06918dd7f.png" /> <img src="https://img2.meite.com/questions/202408/1666bf0695b91e5.png" />  </p>
相关题库