2024年成考高起点《数学(理)》每日一练试题08月28日
<p class="introTit">单选题</p><p>1、函数y=cos<sup>4</sup>x-sin<sup>4</sup>x(x∈R)的最小正周期为()。</p><ul><li>A:<img src='https://img2.meite.com/questions/202408/1666bf06e3598da.png' /></li><li>B:π</li><li>C:2π</li><li>D:4π</li></ul><p>答 案:B</p><p>解 析:y=(cos<sup>2</sup>x+sin<sup>2</sup>x)(cos<sup>2</sup>x-sin<sup>2</sup>x)=cos2x, 所以<img src="https://img2.meite.com/questions/202408/1666bf06ec3299c.png" /></p><p>2、若<img src="https://img2.meite.com/questions/202303/286422574eab213.png" />则<img src="https://img2.meite.com/questions/202303/28642257543afd6.png" />()</p><ul><li>A:<img src='https://img2.meite.com/questions/202303/286422575a7b0ce.png' /></li><li>B:<img src='https://img2.meite.com/questions/202303/286422575f5d2ea.png' /></li><li>C:<img src='https://img2.meite.com/questions/202303/28642257640e720.png' /></li><li>D:<img src='https://img2.meite.com/questions/202303/28642257690a458.png' /></li></ul><p>答 案:B</p><p>解 析:首先做出单位圆,然后根据问题的约束条件,利用三角函数线找出满足条件的a角取值范围 <img src="https://img2.meite.com/questions/202303/28642257c3e01c3.png" />
<img src="https://img2.meite.com/questions/202303/28642257d4935f9.png" />
</p><p>3、已知两条异面直线m;n,且m在平面α内,n在平面β内,设甲:m//β,n//α;乙:平面α//平面β,则()。</p><ul><li>A:甲为乙的必要但非充分条件</li><li>B:甲为乙的充分但非必要条件</li><li>C:甲非乙的充分也非必要条件</li><li>D:甲为乙的充分必要条件</li></ul><p>答 案:D</p><p>解 析:两条异面直线m,n,且m在平面α内,n在平面β内,因为m//β,n//α←→平面α∥平面β,则甲为乙的充分必要条件。答案为D。
</p><p>4、已知正三棱柱的底面积等于<img src="https://img2.meite.com/questions/202408/1666bef932f1e03.png" />侧面积等于30,则此正三棱柱的体积为()。</p><ul><li>A:<img src='https://img2.meite.com/questions/202408/1666bef93baee22.png' /></li><li>B:<img src='https://img2.meite.com/questions/202408/1666bef93eb74ac.png' /></li><li>C:<img src='https://img2.meite.com/questions/202408/1666bef941a23ca.png' /></li><li>D:<img src='https://img2.meite.com/questions/202408/1666bef94575c90.png' /></li></ul><p>答 案:B</p><p>解 析:设正三梭柱的底面的边长为a,底面积为<img src="https://img2.meite.com/questions/202408/1666bef95124238.png" /> 设正三棱柱的高为h,侧面积为3×a×h=3×2×h=30,得h=5.则此正三棱柱的体积为底面积×高=<img src="https://img2.meite.com/questions/202408/1666bef95691d2b.png" /></p><p class="introTit">主观题</p><p>1、已知等差数列{an}中,a1+a2+a3=6,a2+a4+a5= 12求{an}的首项与公差。
</p><p>答 案:因为{an}为等差数列,<img src="https://img2.meite.com/questions/202404/1966222ec336fd9.png" /><img src="https://img2.meite.com/questions/202404/1966222ec71ecf8.png" /></p><p>2、已知直线l的斜率为1,l过抛物线C:<img src="https://img2.meite.com/questions/202303/156411660ae04fb.png" />的焦点,且与C交于A,B两点.(I)求l与C的准线的交点坐标;<br />(II)求|AB|.</p><p>答 案:(I)C的焦点为<img src="https://img2.meite.com/questions/202303/1564116c40cf40a.png" />,准线为<img src="https://img2.meite.com/questions/202303/1564116c45024f5.png" />由题意得l的方程为<img src="https://img2.meite.com/questions/202303/1564116c5cf0409.png" />因此l与C的准线的交点坐标为<img src="https://img2.meite.com/questions/202303/1564116c7901a26.png" />(II)由<img src="https://img2.meite.com/questions/202303/1564116c9294ce9.png" />,得<img src="https://img2.meite.com/questions/202303/1564116c9d411f3.png" />设A(x1,y1),B(x2,y2),则<img src="https://img2.meite.com/questions/202303/1564116cd0bfaf7.png" />因此<img src="https://img2.meite.com/questions/202303/1564116ce1375a9.png" /></p><p>3、求将抛物线y=x<sup>2</sup>-2x-3平移到顶点与坐标原点重合时的函数解析式。
</p><p>答 案:<img src="https://img2.meite.com/questions/202408/1566bda96fc66fc.png" /></p><p>4、已知lg2=a,lg3=b,求lg0.15关于a,b的表达式。
</p><p>答 案:<img src="https://img2.meite.com/questions/202408/1666befa7d58e9e.png" /></p><p class="introTit">填空题</p><p>1、在△ABC中,a=2,b=<img src="https://img2.meite.com/questions/202408/1666befa2b824ca.png" />,∠B=<img src="https://img2.meite.com/questions/202408/1666befa2f7adbe.png" />,则∠A=______。</p><p>答 案:<img src="https://img2.meite.com/questions/202408/1666befa32d9311.png" /></p><p>解 析:<img src="https://img2.meite.com/questions/202408/1666befa35f1a2b.png" /></p><p>2、若平面向量a=(x,1),b=(1,-2),且a//b,则x=()
</p><p>答 案:<img src="https://img2.meite.com/questions/202303/286422508f0554f.png" /></p><p>解 析:由于a//b,故<img src="https://img2.meite.com/questions/202303/286422509cd5c14.png" /></p>