2024年成考专升本《高等数学一》每日一练试题08月26日
<p class="introTit">单选题</p><p>1、设y=sin(x-2),则dy=()。
</p><ul><li>A:-cosxdx</li><li>B:cosxdx</li><li>C:-cos(x-2)dx</li><li>D:cos(x-2)dx</li></ul><p>答 案:D</p><p>解 析:本题考查的知识点为微分运算。 <img src="https://img2.meite.com/questions/202408/1566bda567b6683.png" />可知应选D。
</p><p>2、矩阵<img src="https://img2.meite.com/questions/202202/126207786eb8557.png" />的秩是()</p><ul><li>A:0</li><li>B:1</li><li>C:2</li><li>D:3</li></ul><p>答 案:C</p><p>解 析:<img src="https://img2.meite.com/questions/202202/12620778bb57938.png" />
<img src="https://img2.meite.com/questions/202202/12620778c5bee8e.png" /></p><p>3、级数<img src="https://img2.meite.com/questions/202212/03638ae6efb3f7a.png" />(k为非零常数)是()的。</p><ul><li>A:发散</li><li>B:条件收敛</li><li>C:绝对收敛</li><li>D:敛散性与k值有关</li></ul><p>答 案:C</p><p>解 析:<img src="https://img2.meite.com/questions/202212/03638ae701b8df4.png" />又<img src="https://img2.meite.com/questions/202212/03638ae71a746aa.png" />绝对收敛,所以级数<img src="https://img2.meite.com/questions/202212/03638ae7367fb3f.png" />绝对收敛。</p><p class="introTit">主观题</p><p>1、求微分方程<img src="https://img2.meite.com/questions/202212/03638abfcd7e3d7.png" />的通解。</p><p>答 案:解:<img src="https://img2.meite.com/questions/202212/03638abfdcef73e.png" />的特征方程为<img src="https://img2.meite.com/questions/202212/03638abff01fb1d.png" />,则特征根为<img src="https://img2.meite.com/questions/202212/03638abffe17da5.png" />,故其通解为<img src="https://img2.meite.com/questions/202212/03638ac008bf86f.png" />因为自由项<img src="https://img2.meite.com/questions/202212/03638ac01b1bf1b.png" />不是特征根,故设特殊解为<img src="https://img2.meite.com/questions/202212/03638ac02b593ed.png" />代入原方程,有<img src="https://img2.meite.com/questions/202212/03638ac03e9196e.png" />故<img src="https://img2.meite.com/questions/202212/03638ac04c2d7ae.png" />的通解为<img src="https://img2.meite.com/questions/202212/03638ac05da9731.png" /></p><p>2、求极限<img src="https://img2.meite.com/questions/202211/2963856a48dc287.png" /></p><p>答 案:解:当<img src="https://img2.meite.com/questions/202211/2963856b270530f.png" />时,<img src="https://img2.meite.com/questions/202211/2963856b3fee003.png" />,则<img src="https://img2.meite.com/questions/202211/2963856b4f30989.png" />。</p><p>3、求y=<img src="https://img2.meite.com/questions/202211/306387018466ce4.png" />的一阶导数y'。</p><p>答 案:解:两边取对数得<img src="https://img2.meite.com/questions/202211/306387019d12b78.png" /><img src="https://img2.meite.com/questions/202211/30638701ab3b7a1.png" />两边对x求导得<img src="https://img2.meite.com/questions/202211/30638701d789e30.png" />故<img src="https://img2.meite.com/questions/202211/306387020ad880a.png" /></p><p class="introTit">填空题</p><p>1、设z=xy,则dz=()。</p><p>答 案:ydx+xdy</p><p>解 析:z=xy,则<img src="https://img2.meite.com/questions/202211/16637458b3930f9.png" />=y,<img src="https://img2.meite.com/questions/202211/16637458b901dfc.png" />=x.由于dz=<img src="https://img2.meite.com/questions/202211/16637458d11bcab.png" />可知dz=ydx+xdy。</p><p>2、<img src="https://img2.meite.com/questions/202408/1666bebcd2f3d4f.png" />
</p><p>答 案:x<sup>3</sup>+x</p><p>解 析:<img src="https://img2.meite.com/questions/202408/1666bebcd83449f.png" /></p><p>3、设y=x+sinx,则y’=()
</p><p>答 案:1+cosx</p><p>解 析:<img src="https://img2.meite.com/questions/202405/166645bc839b966.png" /></p><p class="introTit">简答题</p><p>1、设抛物线Y=1-x<sup>2</sup>与x轴的交点为A、B,在抛物线与x轴所围成的平面区域内,以线段AB为下底作内接等腰梯形ABCD(如图2—1所示)。设梯形上底CD长为2x,面积为S(x)。<img src="https://img2.meite.com/questions/202408/1666bf0d55b56bb.png" /><br />(1)写出S(x)的表达式;<br />(2)求S(x)的最大值。
</p><p>答 案:<img src="https://img2.meite.com/questions/202408/1666bf0d5b04a0d.png" /></p>