2024年成考专升本《高等数学一》每日一练试题08月25日
<p class="introTit">单选题</p><p>1、微分方程<img src="https://img2.meite.com/questions/202211/176375b0e4ba59e.png" />的阶数为()。</p><ul><li>A:1</li><li>B:2</li><li>C:3</li><li>D:4</li></ul><p>答 案:B</p><p>解 析:所给方程含有未知函数y的最高阶导数是2阶,因此方程的阶数为2。</p><p>2、<img src="https://img2.meite.com/questions/202408/1666bf05420ab49.png" />()。
</p><ul><li>A:f(2x)</li><li>B:2f(x)</li><li>C:f(-2x)</li><li>D:-2f(x)</li></ul><p>答 案:A</p><p>解 析:<img src="https://img2.meite.com/questions/202408/1666bf05469e7d9.png" /></p><p>3、若<img src="https://img2.meite.com/questions/202211/3063871b92b3cb7.png" />,则<img src="https://img2.meite.com/questions/202211/3063871b9e3abc0.png" />=()。</p><ul><li>A:F(e<sup>-x</sup>)+C</li><li>B:F(e<sup>x</sup>)+C</li><li>C:<img src='https://img2.meite.com/questions/202211/3063871cea8fb80.png' />+C</li><li>D:-F(e<sup>-x</sup>)+C</li></ul><p>答 案:D</p><p>解 析:由<img src="https://img2.meite.com/questions/202211/3063871d071a52d.png" />,可得<img src="https://img2.meite.com/questions/202211/3063871d166a7d0.png" />。</p><p class="introTit">主观题</p><p>1、求微分方程<img src="https://img2.meite.com/questions/202211/16637484836cd55.png" />的通解.</p><p>答 案:解:对应齐次微分方程的特征方程为<img src="https://img2.meite.com/questions/202211/166374848d66f86.png" />特征根为r=1(二重根)。齐次方程的通解为y=(C<sub>1</sub>+C<sub>2</sub>x)<img src="https://img2.meite.com/questions/202211/16637484d1aae1c.png" />(C1,C2为任意常数)。<br />设原方程的特解为<img src="https://img2.meite.com/questions/202211/16637484db40088.png" />,代入原方程可得<img src="https://img2.meite.com/questions/202211/16637484e066dc6.png" />因此<img src="https://img2.meite.com/questions/202211/16637484e4b07a5.png" /><br />故原方程的通解为<img src="https://img2.meite.com/questions/202211/16637484e9df56d.png" /></p><p>2、求<img src="https://img2.meite.com/questions/202212/0163880ec16943e.png" />。</p><p>答 案:解:<img src="https://img2.meite.com/questions/202212/0163880ed358bb0.png" /></p><p>3、求曲线y=sinx、y=cosx、直线x=0在第一象限所围图形的面积A及该图形绕x轴旋转一周所得旋转体的体积V<sub>x</sub>。</p><p>答 案:解:由<img src="https://img2.meite.com/questions/202212/01638816eb363c4.png" />,解得两曲线交点的x坐标为<img src="https://img2.meite.com/questions/202212/01638816fe2c575.png" />。<img src="https://img2.meite.com/questions/202212/016388176a0f817.png" /><img src="https://img2.meite.com/questions/202212/016388174e5df94.png" /><img src="https://img2.meite.com/questions/202212/0163881729a711e.png" /><img src="https://img2.meite.com/questions/202212/016388173bbef42.png" /></p><p class="introTit">填空题</p><p>1、设函数f(x)满足f’(1)=5,则<img src="https://img2.meite.com/questions/202303/0364019ec8db810.png" /></p><p>答 案:10</p><p>解 析:<img src="https://img2.meite.com/questions/202303/036401acbf9d156.png" /><img src="https://img2.meite.com/questions/202303/036401acc7c911f.png" /></p><p>2、若<img src="https://img2.meite.com/questions/202212/03638aebe6e9098.png" />,则k=()。</p><p>答 案:3</p><p>解 析:<img src="https://img2.meite.com/questions/202212/03638aebf688443.png" />,所以<img src="https://img2.meite.com/questions/202212/03638aec061d2e5.png" /></p><p>3、设<img src="https://img2.meite.com/questions/202211/186376e1cbd80d4.png" />则<img src="https://img2.meite.com/questions/202211/186376e1d9e0698.png" />=()。</p><p>答 案:<img src="https://img2.meite.com/questions/202211/186376e1e5e45e8.png" /></p><p>解 析:<img src="https://img2.meite.com/questions/202211/186376e1f5c9fca.png" />将x看作常量,则<img src="https://img2.meite.com/questions/202211/186376e2089ad12.png" /></p><p class="introTit">简答题</p><p>1、设y=y(x)由方程x<sup>2</sup>+2y<sup>3</sup>+2xy+3y-x=1确定,求y’。
</p><p>答 案:<img src="https://img2.meite.com/questions/202408/1666bf0d698a7de.png" /></p><p>解 析:本题考查的知识点为隐函数求导法。 <img src="https://img2.meite.com/questions/202408/1666bf0d6e4d1f6.png" />
</p>