2024年成考专升本《高等数学二》每日一练试题08月25日
<p class="introTit">判断题</p><p>1、若<img src="https://img2.meite.com/questions/202307/1364af5780970e6.png" />,则<img src="https://img2.meite.com/questions/202307/1364af578624075.png" />。()
</p><p>答 案:错</p><p>解 析:<img src="https://img2.meite.com/questions/202212/06638ef8852e1bd.png" />所以<img src="https://img2.meite.com/questions/202212/06638ef88b66bc1.png" /> </p><p class="introTit">单选题</p><p>1、设函数z=xe<sup>y</sup>,则<img src="https://img2.meite.com/questions/202212/03638b0aea61193.png" />().</p><ul><li>A:e<sup>x</sup></li><li>B:e<sup>y</sup></li><li>C:xe<sup>y</sup></li><li>D:ye<sup>x</sup></li></ul><p>答 案:B</p><p>解 析:<img src="https://img2.meite.com/questions/202212/03638b0b0f6d2ec.png" />,<img src="https://img2.meite.com/questions/202212/03638b0b1c8a1b5.png" />.</p><p>2、设<img src="https://img2.meite.com/questions/202212/06638eeb0a112ec.png" />则f(x)在点x=0处().</p><ul><li>A:可导且<img src='https://img2.meite.com/questions/202212/06638eeb199d2a7.png' />=0</li><li>B:可导且<img src='https://img2.meite.com/questions/202212/06638eeb1b04b30.png' />=1</li><li>C:不连续</li><li>D:连续但不可导</li></ul><p>答 案:A</p><p>解 析:因为<img src="https://img2.meite.com/questions/202212/06638eeb2e653bc.png" />,所以,f(x)在x=0处连续;又<img src="https://img2.meite.com/questions/202212/06638eeb4483efe.png" />所以f(x)在点x=0处可导且<img src="https://img2.meite.com/questions/202212/06638eeb586decf.png" />=0.</p><p class="introTit">主观题</p><p>1、计算<img src="https://img2.meite.com/questions/202212/06638edfd88067f.png" />.</p><p>答 案:解:<img src="https://img2.meite.com/questions/202212/06638edfe86e57a.png" />.</p><p>2、计算<img src="https://img2.meite.com/questions/202212/05638d582780bce.png" /></p><p>答 案:解:这是<img src="https://img2.meite.com/questions/202212/05638d5859384fb.png" />型极限,可以使用洛必达法则<img src="https://img2.meite.com/questions/202212/05638d586b29a99.png" /></p><p class="introTit">填空题</p><p>1、设函数f(x)在x=2处连续,且<img src="https://img2.meite.com/questions/202212/06638edd3c64d7a.png" />存在,则f(2)=().</p><p>答 案:1</p><p>解 析:因为<img src="https://img2.meite.com/questions/202212/06638edd5716086.png" />存在,所以<img src="https://img2.meite.com/questions/202212/06638edd6438a74.png" />,即<img src="https://img2.meite.com/questions/202212/06638edd8a49417.png" />.因为f(x)在x=2处连续,所以f(2)=1.</p><p>2、<img src="https://img2.meite.com/questions/202408/1966c2f00be454e.png" />
</p><p>答 案:2</p><p>解 析:<img src="https://img2.meite.com/questions/202408/1966c2f0145e6e9.png" /></p><p class="introTit">简答题</p><p>1、已知函数f(x)=ax<sup>3</sup>-bx<sup>2</sup>+cx在区间<img src="https://img2.meite.com/questions/202212/07639002a0c63f6.png" />内是奇函数,且当x=1时,f(x)有极小值<img src="https://img2.meite.com/questions/202212/07639002ba72fe4.png" />,求另一个极值及此曲线的拐点.
</p><p>答 案:f(x)=ax<sup>3</sup>-bx<sup>2</sup>+cx,<img src="https://img2.meite.com/questions/202212/07639002da708ed.png" /> 由于f(x)是奇函数,则必有x<sup>2</sup>的系数为0,即b=0.
<img src="https://img2.meite.com/questions/202212/07639003148fbf6.png" />即a+c=<img src="https://img2.meite.com/questions/202212/076390032089cb2.png" />,<img src="https://img2.meite.com/questions/202212/0763900324b36b3.png" />得3a+c=0.解得a=<img src="https://img2.meite.com/questions/202212/076390033fe0499.png" />c=<img src="https://img2.meite.com/questions/202212/0763900347cfddd.png" />
此时<img src="https://img2.meite.com/questions/202212/07639003591bd3b.png" />
令<img src="https://img2.meite.com/questions/202212/0763900361d0796.png" />得<img src="https://img2.meite.com/questions/202212/07639003674342f.png" /><img src="https://img2.meite.com/questions/202212/076390036dd8f49.png" />所以<img src="https://img2.meite.com/questions/202212/076390037794ea3.png" />为极大值,<img src="https://img2.meite.com/questions/202212/07639003826209a.png" />得x=0,x<0时,<img src="https://img2.meite.com/questions/202212/0763900396d70f8.png" />
所以(0,0)为曲线的拐点.</p><p>2、设函数y=sin<sup>2</sup>x,求<img src="https://img2.meite.com/questions/202212/076390018c80ad7.png" />
</p><p>答 案:<img src="https://img2.meite.com/questions/202212/076390019cc99c9.png" /> 所以<img src="https://img2.meite.com/questions/202212/07639001a8307c3.png" /></p>