2024年成考专升本《高等数学一》每日一练试题08月21日
<p class="introTit">单选题</p><p>1、下列极限正确的是()。</p><ul><li>A:<img src='https://img2.meite.com/questions/202211/2863847c11dc301.png' /></li><li>B:<img src='https://img2.meite.com/questions/202211/2863847c1dd9881.png' /></li><li>C:<img src='https://img2.meite.com/questions/202211/2863847c2a6539c.png' /></li><li>D:<img src='https://img2.meite.com/questions/202211/2863847c388a5c3.png' /></li></ul><p>答 案:C</p><p>解 析:A项,<img src="https://img2.meite.com/questions/202211/2863847c4584e8a.png" />;B项,<img src="https://img2.meite.com/questions/202211/2863847c534a6cd.png" />;C项,<img src="https://img2.meite.com/questions/202211/2863847c617294c.png" />;D项,<img src="https://img2.meite.com/questions/202211/2863847c73cc617.png" />。</p><p>2、在空间直角坐标系中,方程x<sup>2</sup>+z<sup>2</sup>=z的图形是()。</p><ul><li>A:圆柱面</li><li>B:圆</li><li>C:抛物线</li><li>D:旋转抛物面</li></ul><p>答 案:A</p><p>解 析:方程x<sup>2</sup>+z<sup>2</sup>=z可变形为<img src="https://img2.meite.com/questions/202212/0163881bbd64d42.png" />,由此知该方程表示的是准线为圆、母线平行于y轴的圆柱面。</p><p>3、设函数,f(x)在[a,b]上连续,且F/(x)=f(x),有一点x<sub>0</sub>∈(a,b)使,f(x<sub>0</sub>)=0,且当a≤x≤x<sub>0</sub>时,f(x)>0;当x<sub>0</sub><x≤b时,f(x)<0,则f(x)与x=a,x=b,x轴围成的平面图形的面积为()。</p><ul><li>A:2F(x<sub>0</sub>)-F(b)-F(a)</li><li>B:F(b)-F(a)</li><li>C:-F(b)-F(a)</li><li>D:F(a)-F(b)</li></ul><p>答 案:A</p><p>解 析:由<img src="https://img2.meite.com/questions/202211/3063872020597ac.png" />而f(x)与x=a,x=b,X轴围成的平面图形的面积为<img src="https://img2.meite.com/questions/202211/306387203c4912c.png" /><img src="https://img2.meite.com/questions/202211/3063872051a85c3.png" /><img src="https://img2.meite.com/questions/202211/306387206b52263.png" />。</p><p class="introTit">主观题</p><p>1、某厂要生产容积为V<sub>0</sub>的圆柱形罐头盒,问怎样设计才能使所用材料最省?</p><p>答 案:解:设圆柱形罐头盒的底圆半径为r,高为h,表面积为S,则<img src="https://img2.meite.com/questions/202211/3063870b5663200.png" />由②得<img src="https://img2.meite.com/questions/202211/3063870b8439ec3.png" />,代入①得<img src="https://img2.meite.com/questions/202211/3063870b67012ce.png" /><img src="https://img2.meite.com/questions/202211/3063870be9aa2f9.png" />现在的问题归结为求r在(0,+∞)上取何值时,函数S在其上的值最小。<br />令<img src="https://img2.meite.com/questions/202211/3063870c0519416.png" />,得<img src="https://img2.meite.com/questions/202211/3063870c141ec99.png" /><br />由②,当<img src="https://img2.meite.com/questions/202211/3063870c2488571.png" />时,相应的h为:<img src="https://img2.meite.com/questions/202211/3063870c334a036.png" />。<br />可见当所做罐头盒的高与底圆直径相等时,所用材料最省。</p><p>2、设f(x)是以T为周期的连续函数,a为任意常数,证明:<img src="https://img2.meite.com/questions/202212/01638810a04c178.png" />。</p><p>答 案:证:因为<img src="https://img2.meite.com/questions/202212/01638810b105867.png" />令x=T+t,做变量替换得<img src="https://img2.meite.com/questions/202212/01638810cade25f.png" />故<img src="https://img2.meite.com/questions/202212/01638810de0e205.png" /></p><p>3、求<img src="https://img2.meite.com/questions/202211/2963856ce27e6d8.png" /></p><p>答 案:解:<img src="https://img2.meite.com/questions/202211/2963856cf281662.png" /><img src="https://img2.meite.com/questions/202211/2963856d0bd9b82.png" /></p><p class="introTit">填空题</p><p>1、<img src="https://img2.meite.com/questions/202211/176375a30c09bc6.png" />()。</p><p>答 案:arctanx+C</p><p>解 析:由不定积分基本公式可知<img src="https://img2.meite.com/questions/202211/176375a31d1eca0.png" /></p><p>2、微分方程<img src="https://img2.meite.com/questions/202212/0163886e0a7762f.png" />的通解是()。</p><p>答 案:<img src="https://img2.meite.com/questions/202212/0163886e15023dd.png" /></p><p>解 析:分离变量,得<img src="https://img2.meite.com/questions/202212/0163886e2383f9f.png" />,两边同时积分,有<img src="https://img2.meite.com/questions/202212/0163886e32a54ae.png" />。</p><p>3、<img src="https://img2.meite.com/questions/202408/1666bec7597e1fc.png" />
</p><p>答 案:e<sup>y</sup></p><p>解 析:<img src="https://img2.meite.com/questions/202408/1666bec75e1e841.png" /></p><p class="introTit">简答题</p><p>1、求曲线y=<img src="https://img2.meite.com/questions/202408/1566bda96db7d5d.png" />在点(1,1)处的切线方程。
</p><p>答 案:<img src="https://img2.meite.com/questions/202408/1566bda97591f31.png" /></p><p>解 析:本题考查的知识点为曲线的切线方程。</p>