2024年成考专升本《高等数学二》每日一练试题08月21日
<p class="introTit">判断题</p><p>1、若<img src="https://img2.meite.com/questions/202307/1364af5780970e6.png" />,则<img src="https://img2.meite.com/questions/202307/1364af578624075.png" />。()
</p><p>答 案:错</p><p>解 析:<img src="https://img2.meite.com/questions/202212/06638ef8852e1bd.png" />所以<img src="https://img2.meite.com/questions/202212/06638ef88b66bc1.png" /> </p><p class="introTit">单选题</p><p>1、设z=<img src="https://img2.meite.com/questions/202212/07639049ff5960f.png" />,则<img src="https://img2.meite.com/questions/202212/0763904a0e81f6b.png" />=().</p><ul><li>A:<img src='https://img2.meite.com/questions/202212/0763904a17ad569.png' /></li><li>B:<img src='https://img2.meite.com/questions/202212/0763904a2164c15.png' /></li><li>C:<img src='https://img2.meite.com/questions/202212/0763904a2a26abf.png' /></li><li>D:<img src='https://img2.meite.com/questions/202212/0763904a329cc61.png' /></li></ul><p>答 案:D</p><p>解 析:先对x求导,再对y求导.因为<img src="https://img2.meite.com/questions/202212/0763904a448b165.png" />.所以<img src="https://img2.meite.com/questions/202212/0763904a55768e5.png" /></p><p>2、已知<img src="https://img2.meite.com/questions/202212/06638ee92dad126.png" />,则<img src="https://img2.meite.com/questions/202212/06638ee93baa212.png" />=().</p><ul><li>A:<img src='https://img2.meite.com/questions/202212/06638ee9462495d.png' /></li><li>B:<img src='https://img2.meite.com/questions/202212/06638ee9519cd96.png' /></li><li>C:<img src='https://img2.meite.com/questions/202212/06638ee95a2bfca.png' /></li><li>D:<img src='https://img2.meite.com/questions/202212/06638ee96305d11.png' /></li></ul><p>答 案:B</p><p>解 析:因为<img src="https://img2.meite.com/questions/202212/06638eea0121449.png" />,所以<img src="https://img2.meite.com/questions/202212/06638eea0b32e71.png" />.</p><p class="introTit">主观题</p><p>1、计算<img src="https://img2.meite.com/questions/202212/06638e9ca8b67fc.png" />.</p><p>答 案:解:<img src="https://img2.meite.com/questions/202212/06638e9cb5ca788.png" /></p><p>2、设<img src="https://img2.meite.com/questions/202212/0863914d5ba8abc.png" />,其中f为可微函数.证明:<img src="https://img2.meite.com/questions/202212/0863914d69e3e13.png" />.</p><p>答 案:证:因为<img src="https://img2.meite.com/questions/202212/0863914d7a96b31.png" />所以<img src="https://img2.meite.com/questions/202212/0863914d8649bcf.png" /></p><p class="introTit">填空题</p><p>1、当x→0时,f(x)与sin2x是等价无穷小量,则<img src="https://img2.meite.com/questions/202212/05638d97d083de0.png" />().</p><p>答 案:1</p><p>解 析:根据等价无穷小定义,可知<img src="https://img2.meite.com/questions/202212/05638d97e363000.png" />.</p><p>2、设<img src="https://img2.meite.com/questions/202212/0863914076da72a.png" />,则dz=()</p><p>答 案:<img src="https://img2.meite.com/questions/202212/086391408668132.png" /></p><p>解 析:<img src="https://img2.meite.com/questions/202212/0863914098141af.png" /><img src="https://img2.meite.com/questions/202212/08639140a895c8e.png" /></p><p class="introTit">简答题</p><p>1、已知函数f(x)=ax<sup>3</sup>+bx<sup>2</sup>+cx在点x<sub>0</sub>处取得极大值5,其导函数y=f’(x)的图像经过点(1,0)和(2,0)(如图2-1-1所示)。<img src="https://img2.meite.com/questions/202408/1966c2e68530af3.png" /><br />(1)求极值点x<sub>0</sub>的值;<br />(2)求a,b,c的值。</p><p>答 案:本题考查的知识点是利用导数的图像来判定函数的单调区间和极值点,并以此确定函数的表达式。 (1)在x=1处f’(1)=0,且x<1时,f’(x)>0;1<x<2时,f’(x)<0,可知x=1是极值点,即x<sub>0</sub>=1。(2)因为<img src="https://img2.meite.com/questions/202408/1966c2e68c9554f.png" />由上面三式解得a=2,b=-9,c=12。
</p><p>2、求由方程<img src="https://img2.meite.com/questions/202303/206417f7aa7ea9e.png" />确定的隐函数和全微分
</p><p>答 案:等式两边对x求导,将y看作常数,则<img src="https://img2.meite.com/questions/202303/206417f7d9f15cf.png" />同理<img src="https://img2.meite.com/questions/202303/206417f7eb61c1a.png" />所以<img src="https://img2.meite.com/questions/202303/206417f812145ae.png" /></p>