2024年成考专升本《高等数学一》每日一练试题08月19日
<p class="introTit">单选题</p><p>1、设<img src="https://img2.meite.com/questions/202405/166645c417e4f01.png" />,则<img src="https://img2.meite.com/questions/202405/166645c41bdaa5a.png" />()
</p><ul><li>A:<img src='https://img2.meite.com/questions/202405/166645c42052db0.png' /></li><li>B:<img src='https://img2.meite.com/questions/202405/166645c424757de.png' /></li><li>C:<img src='https://img2.meite.com/questions/202405/166645c428484d9.png' /></li><li>D:<img src='https://img2.meite.com/questions/202405/166645c42c6092e.png' /></li></ul><p>答 案:B</p><p>解 析:<img src="https://img2.meite.com/questions/202405/166645c4319ca7a.png" /></p><p>2、<img src="https://img2.meite.com/questions/202211/176375aef6d5445.png" />()。</p><ul><li>A:<img src='https://img2.meite.com/questions/202211/176375af04aac98.png' /></li><li>B:<img src='https://img2.meite.com/questions/202211/176375af141575c.png' /></li><li>C:<img src='https://img2.meite.com/questions/202211/176375af2048e30.png' /></li><li>D:<img src='https://img2.meite.com/questions/202211/176375af2e1d1a2.png' /></li></ul><p>答 案:C</p><p>解 析:由不定积分运算法则及基本公式可得<img src="https://img2.meite.com/questions/202211/176375af4738559.png" />。</p><p>3、设z=x<sup>2</sup>-3y,则dz=()。</p><ul><li>A:2xdx-3ydy</li><li>B:x<sup>2</sup>dx-3dy</li><li>C:2xdx-3dy</li><li>D:x<sup>2</sup>dx-3ydy</li></ul><p>答 案:C</p><p>解 析:z=x<sup>2</sup>-3y,则<img src="https://img2.meite.com/questions/202211/1763759f22820a2.png" />。</p><p class="introTit">主观题</p><p>1、将f(x)=sin3x展开为x的幂级数,并指出其收敛区间。</p><p>答 案:解:由于<img src="https://img2.meite.com/questions/202212/016388627d9a6c4.png" />可知<img src="https://img2.meite.com/questions/202212/016388628ad87e5.png" /><img src="https://img2.meite.com/questions/202212/016388629c34e26.png" /></p><p>2、设函数<img src="https://img2.meite.com/questions/202211/176375da8476d02.png" />在x=0处连续,求常数a的值</p><p>答 案:解:f(x)在x=0处连续,则<img src="https://img2.meite.com/questions/202211/176375daa0c1850.png" />,<img src="https://img2.meite.com/questions/202211/176375daca19cb0.png" />故<img src="https://img2.meite.com/questions/202211/176375dadef0631.png" />。</p><p>3、试证:当x>0时,有不等式<img src="https://img2.meite.com/questions/202212/03638affc6aa0f3.png" /></p><p>答 案:证:先证x>sinx(x>0)。设f(x)=x-sinx,则f(x)=1-cosx≥0(x>0),所以f(x)为单调递增函数,于是对x>0有f(x)>f(0)=0,即x-sinx>0,亦即x>sinx(x>0)。再证<img src="https://img2.meite.com/questions/202212/03638affee811dd.png" /><br />令<img src="https://img2.meite.com/questions/202212/03638afffc44f70.png" /><br />则<img src="https://img2.meite.com/questions/202212/03638b0009b99c4.png" />,所以g'(x)单调递增,又g'(x)=0,可知g'(x)>g'(0)=0(x>0),那么有g(x)单调递增,又g(0)=0,可知g(x)>g(0)=0(x>0),所以<img src="https://img2.meite.com/questions/202212/03638b0054d6d06.png" />即<img src="https://img2.meite.com/questions/202212/03638b0063d9343.png" /><br />综上可得:当x>0时,<img src="https://img2.meite.com/questions/202212/03638b007c4f31d.png" />。</p><p class="introTit">填空题</p><p>1、设z=ln(x<sup>2</sup>+y),则dz=()。
</p><p>答 案:<img src="https://img2.meite.com/questions/202408/1566bdc15c7f09f.png" /></p><p>解 析:本题考查的知识点为求二元函数的全微分。 <img src="https://img2.meite.com/questions/202408/1566bdc1617a8c4.png" />
</p><p>2、定积分<img src="https://img2.meite.com/questions/202211/30638723be8da0b.png" />dx=()。</p><p>答 案:</p><p>解 析:因为<img src="https://img2.meite.com/questions/202211/30638723cfd41f5.png" />是奇函数,所以定积分<img src="https://img2.meite.com/questions/202211/30638723ef3e7de.png" />。</p><p>3、设曲线y=f(x)在点(1,f(1))处的切线平行于x轴,则该切线方程()。
</p><p>答 案:y=f(1)。</p><p>解 析:本题考查的知识点有两个:一是导数的几何意义,二是求切线方程。设切点为(x<sub>0</sub>,f(x<sub>0</sub>)),则曲线y=f(x)过该点的切线方程为<img src="https://img2.meite.com/questions/202408/1566bda8c32f288.png" /><br /><img src="https://img2.meite.com/questions/202408/1566bda8c902356.png" /> <img src="https://img2.meite.com/questions/202408/1566bda8ccb1a3c.png" />
</p><p class="introTit">简答题</p><p>1、设函数z(x,y)由方程<img src="https://img2.meite.com/questions/202303/176414074ee99be.png" />所确定
证明:<img src="https://img2.meite.com/questions/202303/176414075c587da.png" /></p><p>答 案:<img src="https://img2.meite.com/questions/202303/176414076fa1487.png" /> <img src="https://img2.meite.com/questions/202303/176414077960454.png" />所以<img src="https://img2.meite.com/questions/202303/176414077fe7935.png" /><img src="https://img2.meite.com/questions/202303/17641407920ce9d.png" />
</p>