2024年成考专升本《高等数学一》每日一练试题08月17日

聚题库
08/17
<p class="introTit">单选题</p><p>1、下列级数中绝对收敛的是()。</p><ul><li>A:<img src='https://img2.meite.com/questions/202212/016388576f03337.png' /></li><li>B:<img src='https://img2.meite.com/questions/202212/0163885779c5ce7.png' /></li><li>C:<img src='https://img2.meite.com/questions/202212/016388578377773.png' /></li><li>D:<img src='https://img2.meite.com/questions/202212/016388578e33b50.png' /></li></ul><p>答 案:C</p><p>解 析:本题考查绝对收敛的定义.A项,<img src="https://img2.meite.com/questions/202212/01638857a312410.png" />发散;B项,<img src="https://img2.meite.com/questions/202212/01638857b475ae0.png" />发散,即<img src="https://img2.meite.com/questions/202212/01638857c637a0a.png" />条件收敛;C项,<img src="https://img2.meite.com/questions/202212/01638857d6187ff.png" />收敛;D项,<img src="https://img2.meite.com/questions/202212/01638857ecd2e95.png" />发散。</p><p>2、<img src="https://img2.meite.com/questions/202408/1666beed9627648.png" />()。  </p><ul><li>A:0</li><li>B:1</li><li>C:e</li><li>D:e<sup>2</sup> </li></ul><p>答 案:B</p><p>解 析:<img src="https://img2.meite.com/questions/202408/1666beed9b7f1dc.png" />为初等函数,且点x=0在<img src="https://img2.meite.com/questions/202408/1666beeda5406c0.png" />的定义区间内,因此<img src="https://img2.meite.com/questions/202408/1666beedaaa73a2.png" />,故选B。</p><p>3、<img src="https://img2.meite.com/questions/202408/1666bf054e0173a.png" />()。  </p><ul><li>A:x+y</li><li>B:x</li><li>C:y</li><li>D:2x</li></ul><p>答 案:D</p><p>解 析:<img src="https://img2.meite.com/questions/202408/1666bf055258dc6.png" /></p><p class="introTit">主观题</p><p>1、设切线l是曲线y=x<sup>2</sup>+3在点(1,4)处的切线,求由该曲线,切线,及y轴围成的平面图形的面积S。</p><p>答 案:解:y=x<sup>2</sup>+3,=2x。切点(1,4),y'(1)=2.故切线l的方程为y-4=2(x-1),即<img src="https://img2.meite.com/questions/202211/166374af856aae2.png" /></p><p>2、求<img src="https://img2.meite.com/questions/202211/166374818f129f0.png" />.</p><p>答 案:解:<img src="https://img2.meite.com/questions/202211/1663748193a34ba.png" /><img src="https://img2.meite.com/questions/202211/166374819958327.png" />=2ln2</p><p>3、求<img src="https://img2.meite.com/questions/202211/2963856b9fa7d50.png" /></p><p>答 案:解:<img src="https://img2.meite.com/questions/202211/2963856bb1eca82.png" /><img src="https://img2.meite.com/questions/202211/2963856bc769de2.png" /></p><p class="introTit">填空题</p><p>1、通解为<img src="https://img2.meite.com/questions/202212/026389595f3eed5.png" />的二阶常系数线性齐次微分方程是()。</p><p>答 案:<img src="https://img2.meite.com/questions/202212/026389596f5468d.png" /></p><p>解 析:特征方程的两根<img src="https://img2.meite.com/questions/202212/026389597be3247.png" />,故特征方程为<img src="https://img2.meite.com/questions/202212/026389598857bce.png" />,即<img src="https://img2.meite.com/questions/202212/026389599476e85.png" />,则二阶常系数线性齐次微分方程<img src="https://img2.meite.com/questions/202212/02638959a34e96b.png" />。</p><p>2、若积分<img src="https://img2.meite.com/questions/202212/01638805305ac0b.png" />,则积分<img src="https://img2.meite.com/questions/202212/016388053d3b9c9.png" />=()。</p><p>答 案:F(1nx)+C</p><p>解 析:<img src="https://img2.meite.com/questions/202212/016388054c82576.png" />,因为<img src="https://img2.meite.com/questions/202212/0163880557cce59.png" />,所以令<img src="https://img2.meite.com/questions/202212/0163880563626e4.png" />得<img src="https://img2.meite.com/questions/202212/016388059cf11ad.png" />。</p><p>3、设函数y=x<sup>n</sup>,则y<sup>(n+1)</sup>=()。</p><p>答 案:</p><p>解 析:y=x<sup>n</sup>,则<img src="https://img2.meite.com/questions/202211/306386b395080a5.png" /><img src="https://img2.meite.com/questions/202211/306386b3a71dd87.png" />,<img src="https://img2.meite.com/questions/202211/306386b3b68bfb4.png" />。</p><p class="introTit">简答题</p><p>1、设z=sinxy,求<img src="https://img2.meite.com/questions/202405/166645be5b02915.png" />  </p><p>答 案:<img src="https://img2.meite.com/questions/202405/166645be5fe5349.png" /></p>
相关题库