2024年成考高起点《数学(理)》每日一练试题08月14日
<p class="introTit">单选题</p><p>1、<img src="https://img2.meite.com/questions/202303/2864225b891ad2c.png" />展开式中,末3项的系数(a,x 均未知) 之和为()
</p><ul><li>A:22</li><li>B:12</li><li>C:10</li><li>D:-10</li></ul><p>答 案:C</p><p>解 析:<img src="https://img2.meite.com/questions/202303/2864225bbb4b976.png" /><img src="https://img2.meite.com/questions/202303/2864225bc299c02.png" /><img src="https://img2.meite.com/questions/202303/2864225bcaa8096.png" />末三项数之和为<img src="https://img2.meite.com/questions/202303/2864225bdfc7788.png" /><img src="https://img2.meite.com/questions/202303/2864225beaa0cc1.png" /></p><p>2、设f(x)=x<sup>3</sup>+ax<sup>2</sup>+x为奇函数,则a=()。</p><ul><li>A:1</li><li>B:0</li><li>C:</li><li>D:-2
D.C.-1
</li></ul><p>答 案:B</p><p>解 析:本题主要考查的知识点为函数的奇偶性.
因为f(x)为奇函数,故f(-x)=-f(x)。即-x<sup>3</sup>+ax<sup>2</sup>-x=-x<sup>3</sup>-ax<sup>2</sup>-x,a=0。</p><p>3、下列函数中,为减函数的是()</p><ul><li>A:<img src='https://img2.meite.com/questions/202303/1564116457c8a2d.png' /></li><li>B:<img src='https://img2.meite.com/questions/202303/156411645ea88b7.png' /></li><li>C:<img src='https://img2.meite.com/questions/202303/1564116464062a5.png' /></li><li>D:<img src='https://img2.meite.com/questions/202303/1564116467a737e.png' /></li></ul><p>答 案:C</p><p>解 析:由对数函数的性质可知,当底数大于0小于1时,在定义域内,对数函数为减函数.</p><p>4、函数<img src="https://img2.meite.com/questions/202303/156411640a2cd90.png" />的定义域是()</p><ul><li>A:{x|-3<x<-1}</li><li>B:{x|x<-3或x>-1}</li><li>C:{x|1<x<3}</li><li>D:{x|x<1或x>3}</li></ul><p>答 案:D</p><p>解 析:由对数函数的性质可知<img src="https://img2.meite.com/questions/202303/15641167889eb44.png" />,解得x>3或x<1,因此函数的定义域为{x|x<1或x>3}</p><p class="introTit">主观题</p><p>1、设函数f(x)=<img src="https://img2.meite.com/questions/202303/28642286431b211.png" />
(Ⅰ)求f(x)的单调区间;
(Ⅱ)求 f(x)的极值</p><p>答 案:(Ⅰ)函数的定义域为<img src="https://img2.meite.com/questions/202303/28642286bee9cc3.png" /> <img src="https://img2.meite.com/questions/202303/28642286c7d68a9.png" />
(Ⅱ)<img src="https://img2.meite.com/questions/202303/28642286d3444c8.png" />
</p><p>2、在△ABC中,B=120°,BC=4,△ABC的面积为<img src="https://img2.meite.com/questions/202303/15641165ec55404.png" />,求AC.</p><p>答 案:由△ABC的面积为<img src="https://img2.meite.com/questions/202303/15641165ec55404.png" />得<img src="https://img2.meite.com/questions/202303/1564116bba3c98d.png" />所以AB =4.因此<img src="https://img2.meite.com/questions/202303/1564116be4bebd5.png" />所以<img src="https://img2.meite.com/questions/202303/1564116be967e8f.png" /></p><p>3、已知等差数列前n项和<img src="https://img2.meite.com/questions/202303/2864228a3204a03.png" />
(Ⅰ)求这个数列的通项公式;(Ⅱ)求数列第六项到第十项的和</p><p>答 案:<img src="https://img2.meite.com/questions/202303/2864228a568855e.png" /> <img src="https://img2.meite.com/questions/202303/2864228a63bc5a4.png" />
</p><p>4、在正四棱柱ABCD-A'B'C'D'中,<img src="https://img2.meite.com/questions/202303/2864229a3bc3098.png" />
(Ⅰ)写出向量<img src="https://img2.meite.com/questions/202303/2864229a57ba174.png" />和<img src="https://img2.meite.com/questions/202303/2864229a5e46ac8.png" />关于基底{a,b,c}的分解式;
(Ⅱ)求证:<img src="https://img2.meite.com/questions/202303/2864229a76ba56d.png" />
(Ⅲ)求证:<img src="https://img2.meite.com/questions/202303/2864229a7fdd541.png" />
</p><p>答 案:(Ⅰ)由题意知(如图所示) <img src="https://img2.meite.com/questions/202303/2864229af6b1567.png" />
<img src="https://img2.meite.com/questions/202303/2864229afe90f50.png" />
<img src="https://img2.meite.com/questions/202303/2864229b08314c5.png" />
</p><p class="introTit">填空题</p><p>1、不等式<img src="https://img2.meite.com/questions/202303/28642289d6ca884.png" />的解集为()
</p><p>答 案:<img src="https://img2.meite.com/questions/202303/28642289e5c9bcc.png" /></p><p>解 析:<img src="https://img2.meite.com/questions/202303/28642289efc4ba4.png" /><img src="https://img2.meite.com/questions/202303/28642289fa37c87.png" /><img src="https://img2.meite.com/questions/202303/2864228a0077853.png" /></p><p>2、若平面向量a=(x,1),b=(1,-2),且a//b,则x=()
</p><p>答 案:<img src="https://img2.meite.com/questions/202303/286422508f0554f.png" /></p><p>解 析:由于a//b,故<img src="https://img2.meite.com/questions/202303/286422509cd5c14.png" /></p>