2024年成考专升本《高等数学一》每日一练试题08月12日
<p class="introTit">单选题</p><p>1、<img src="https://img2.meite.com/question/import/f757d257334d046f99d22434cfcc010b.png" /></p><ul><li>A:1-cos x</li><li>B:1+cos x</li><li>C:2-cos x</li><li>D:2+cos x</li></ul><p>答 案:D</p><p>2、设区域D为x<sup>2</sup>+y<sup>2</sup>≤4,则<img src="https://img2.meite.com/questions/202212/01638843fe8f267.png" />=()。</p><ul><li>A:4π</li><li>B:3π</li><li>C:2π</li><li>D:π</li></ul><p>答 案:A</p><p>解 析:由二重积分的性质可知<img src="https://img2.meite.com/questions/202212/016388441416a0f.png" />A为区域D的面积.由于D为x<sup>2</sup>+y<sup>2</sup>≤4表示圆域,半径为2,A=π×2<sup>2</sup>=4π。</p><p>3、设y=f(x)在点x<sub>0</sub>=0处可导,且x<sub>0</sub>=0为f(x)的极值点,则()。</p><ul><li>A:f'(0)=0</li><li>B:f(0)=0</li><li>C:f(0)=1</li><li>D:f(0)不可能是0</li></ul><p>答 案:A</p><p>解 析:f(x)在x=0处为极值点,不妨设为极大值点。又f(x)在x=0处可导,则有<img src="https://img2.meite.com/questions/202211/296385c6c211026.png" />,<img src="https://img2.meite.com/questions/202211/296385c6d96bb6b.png" />,则有<img src="https://img2.meite.com/questions/202211/296385c6e4d7886.png" />,<img src="https://img2.meite.com/questions/202211/296385c6f25fb2c.png" />异号,又f(x)在x=0处可导,所以<img src="https://img2.meite.com/questions/202211/296385c70eed20d.png" />。</p><p class="introTit">主观题</p><p>1、计算<img src="https://img2.meite.com/questions/202109/1661429dcbbed55.png" width="107" /></p><p>答 案:<img src="https://img2.meite.com/questions/202109/1661429de15b12a.png" width="259" /></p><p>2、求<img src="https://img2.meite.com/questions/202211/176375a84a8cfed.png" /></p><p>答 案:解:方法一:(洛必达法则)<img src="https://img2.meite.com/questions/202211/176375a85dc2360.png" />方法二:(等价无穷小)<img src="https://img2.meite.com/questions/202211/176375a870ab12a.png" /><img src="https://img2.meite.com/questions/202211/176375a87faccf4.png" /></p><p>3、将函数<img src="https://img2.meite.com/questions/202211/176375acbfe6f24.png" />展开成x的幂级数,并指出其收敛区间</p><p>答 案:解:因为<img src="https://img2.meite.com/questions/202211/176375acd243164.png" />所以<img src="https://img2.meite.com/questions/202211/176375ace684eb8.png" />其中5x∈(-1,1),得收敛区间<img src="https://img2.meite.com/questions/202211/176375ad137c097.png" /></p><p class="introTit">填空题</p><p>1、设z=2x+y<sup>2</sup>,则dz=()。</p><p>答 案:2dx+2ydy</p><p>解 析:由于<img src="https://img2.meite.com/questions/202211/176375d6d4b56ba.png" />,可得<img src="https://img2.meite.com/questions/202211/176375d6ec4061d.png" /></p><p>2、<img src="https://img2.meite.com/questions/202303/0364019f2d93e66.png" />
</p><p>答 案:2</p><p>解 析:令<img src="https://img2.meite.com/questions/202303/036401ad79b4aed.png" />有<img src="https://img2.meite.com/questions/202303/036401ad87f2364.png" />即函数f(x)是奇函数,因此<img src="https://img2.meite.com/questions/202303/036401ada692d38.png" /><img src="https://img2.meite.com/questions/202303/036401adb605289.png" /></p><p>3、微分方程y"+2y'+y=0满足初始条件<img src="https://img2.meite.com/questions/202212/02638958b6bd20a.png" />,<img src="https://img2.meite.com/questions/202212/02638958c4c632d.png" />的特解是()。</p><p>答 案:(2+5x)e<sup>-x</sup></p><p>解 析:微分方程的特征方程为<img src="https://img2.meite.com/questions/202212/02638958dd1b432.png" />,得<img src="https://img2.meite.com/questions/202212/02638958ea972f8.png" />,微分方程的通解为<img src="https://img2.meite.com/questions/202212/02638958f9950e9.png" />.将<img src="https://img2.meite.com/questions/202212/0263895905dec75.png" />,<img src="https://img2.meite.com/questions/202212/0263895913c0ae4.png" />代入得<img src="https://img2.meite.com/questions/202212/0263895923131b1.png" />,<img src="https://img2.meite.com/questions/202212/026389592f3ee81.png" />,则<img src="https://img2.meite.com/questions/202212/026389593e3bb42.png" />.故微分方程通解为<img src="https://img2.meite.com/questions/202212/026389594fa6b48.png" />。</p><p class="introTit">简答题</p><p>1、设<img src="https://img2.meite.com/questions/202303/1764140acc4272d.png" />求常数a,b</p><p>答 案:<img src="https://img2.meite.com/questions/202303/1764140aef77cdc.png" /> 由此积分收敛知,应有b-a=0,即b=a,
<img src="https://img2.meite.com/questions/202303/1764140b178b135.png" />
</p>