2024年成考专升本《高等数学一》每日一练试题08月10日
<p class="introTit">单选题</p><p>1、在空间直角坐标系中,方程<img src="https://img2.meite.com/questions/202212/03638ae66dad330.png" />表示()。</p><ul><li>A:两个平面</li><li>B:双曲柱面</li><li>C:椭圆柱面</li><li>D:圆柱面</li></ul><p>答 案:A</p><p>解 析:由<img src="https://img2.meite.com/questions/202212/03638ae67e14388.png" />得<img src="https://img2.meite.com/questions/202212/03638ae68c0330d.png" />,故为两个平面。</p><p>2、若幂级数<img src="https://img2.meite.com/questions/202212/01638858473e0ab.png" />的收敛区间是[1,1),则级数<img src="https://img2.meite.com/questions/202212/0163885856a83ef.png" />的收敛区间是()。</p><ul><li>A:[-1,1]</li><li>B:[-1,1)</li><li>C:(0,2]</li><li>D:[0,2)</li></ul><p>答 案:D</p><p>解 析:因为幂级数<img src="https://img2.meite.com/questions/202212/01638858724f819.png" />的收敛区间是[-1,1),则级数<img src="https://img2.meite.com/questions/202212/01638858853aa94.png" />的收敛区间为<img src="https://img2.meite.com/questions/202212/016388589a3c58d.png" />,即<img src="https://img2.meite.com/questions/202212/01638858ab84078.png" /><2。</p><p>3、当x→0时,与3x<sup>2</sup>+2x<sup>3</sup>等价的无穷小量是()。</p><ul><li>A:2x<sup>3</sup></li><li>B:3x<sup>2</sup></li><li>C:x<sup>2</sup></li><li>D:x<sup>3</sup></li></ul><p>答 案:B</p><p>解 析:由于当x→0时,3x<sup>2</sup>为x的二阶无穷小量,2x<sup>3</sup>为x的三阶无穷小量,因此3x<sup>2</sup>+2x<sup>3</sup>为x的二阶无穷小量,即<img src="https://img2.meite.com/questions/202212/03638af648102e7.png" />。</p><p class="introTit">主观题</p><p>1、求y'+<img src="https://img2.meite.com/questions/202212/03638abf7b42c03.png" />=1的通解.</p><p>答 案:解:<img src="https://img2.meite.com/questions/202212/03638abf8ac5f6c.png" /></p><p>2、求微分方程<img src="https://img2.meite.com/questions/202212/03638b01839ca7b.png" />的通解.</p><p>答 案:解:对应齐次微分方程的特征方程为<img src="https://img2.meite.com/questions/202212/03638b019490467.png" />,解得r<sub>1</sub>=3,r<sub>2</sub>=-2.所以齐次通解为<img src="https://img2.meite.com/questions/202212/03638b01b0cf47a.png" />。设方程的特解设为y*=(Ax+B)e<sup>x</sup>,代入原微分方程可解得,A=<img src="https://img2.meite.com/questions/202212/03638b01cb92f6c.png" />,B=<img src="https://img2.meite.com/questions/202212/03638b01d9339ef.png" />.即非齐次微分方程特解为<img src="https://img2.meite.com/questions/202212/03638b01ea50130.png" />。所以微分方程<img src="https://img2.meite.com/questions/202212/03638b01f95ca36.png" />的通解为<img src="https://img2.meite.com/questions/202212/03638b0209e7294.png" />。</p><p>3、求曲线y=sinx、y=cosx、直线x=0在第一象限所围图形的面积A及该图形绕x轴旋转一周所得旋转体的体积V<sub>x</sub>。</p><p>答 案:解:由<img src="https://img2.meite.com/questions/202212/01638816eb363c4.png" />,解得两曲线交点的x坐标为<img src="https://img2.meite.com/questions/202212/01638816fe2c575.png" />。<img src="https://img2.meite.com/questions/202212/016388176a0f817.png" /><img src="https://img2.meite.com/questions/202212/016388174e5df94.png" /><img src="https://img2.meite.com/questions/202212/0163881729a711e.png" /><img src="https://img2.meite.com/questions/202212/016388173bbef42.png" /></p><p class="introTit">填空题</p><p>1、直线<img src="https://img2.meite.com/questions/202212/01638820c5ae781.png" />的标准式方程为()。</p><p>答 案:<img src="https://img2.meite.com/questions/202212/01638820d496028.png" /></p><p>解 析:取z=0,可得直线上一点(-5,-8,0)直线的方向<img src="https://img2.meite.com/questions/202212/01638820fa50398.png" />所以直线方程为:<img src="https://img2.meite.com/questions/202212/01638820d496028.png" /></p><p>2、设y=f(x)可导,点x<sub>0</sub>=2为f(x)的极小值点,且f(2)=3,则曲线y=f(x)在点(2,3)处的切线方程为()。</p><p>答 案:y=3</p><p>解 析:由于y=f(x)可导,且点x<sub>0</sub>=2为f(x)的极小值点,由极值的必要条件可得<img src="https://img2.meite.com/questions/202211/186376eab73520a.png" />又f(2)=3,可知曲线过点(2,3)的切线方程为<img src="https://img2.meite.com/questions/202211/186376eacb7a1f5.png" /></p><p>3、<img src="https://img2.meite.com/questions/202211/176375a3293c893.png" />()。</p><p>答 案:1</p><p>解 析:<img src="https://img2.meite.com/questions/202211/176375a337848f1.png" /></p><p class="introTit">简答题</p><p>1、计算<img src="https://img2.meite.com/questions/202405/166645c48ae9784.png" />
</p><p>答 案:<img src="https://img2.meite.com/questions/202405/166645c49761600.png" /></p>