2024年成考专升本《高等数学一》每日一练试题08月09日

聚题库
08/09
<p class="introTit">单选题</p><p>1、<img src="https://img2.meite.com/questions/202405/166645bbbd3cecb.png" />()  </p><ul><li>A:sinx+C</li><li>B:-sinx+C</li><li>C:cosx+C</li><li>D:-cosx+C</li></ul><p>答 案:D</p><p>解 析:<img src="https://img2.meite.com/questions/202405/166645bbc52708b.png" /></p><p>2、<img src="https://img2.meite.com/questions/202211/2863847cb50e4ef.png" />=()。</p><ul><li>A:<img src='https://img2.meite.com/questions/202211/2863847cbf98ec8.png' /></li><li>B:-<img src='https://img2.meite.com/questions/202211/2863847cc0a9a5f.png' /></li><li>C:±<img src='https://img2.meite.com/questions/202211/2863847cc4e816c.png' /></li><li>D:不存在</li></ul><p>答 案:D</p><p>解 析:<img src="https://img2.meite.com/questions/202211/2863847cd251b10.png" />,<img src="https://img2.meite.com/questions/202211/2863847cdf86060.png" />,所以<img src="https://img2.meite.com/questions/202211/2863847cef6ee2d.png" />不存在。</p><p>3、对于微分方程<img src="https://img2.meite.com/questions/202212/0163886b75a6de5.png" />,利用待定系数法求其特解y*时,下列特解设法正确的是()。</p><ul><li>A:y*=(Ax+B)e<sup>x</sup></li><li>B:y*=x(Ax+B)e<sup>x</sup></li><li>C:y*=Ax<sup>3</sup>e<sup>x</sup></li><li>D:y*=x<sup>2</sup>(Ax+B)e<sup>x</sup></li></ul><p>答 案:D</p><p>解 析:特征方程为r<sup>2</sup>-2r+1=0,特征根为r=1(二重根),<img src="https://img2.meite.com/questions/202212/0163886bbd8c2a4.png" />,a=1为特征根,原方程特解为<img src="https://img2.meite.com/questions/202212/0163886bda4453b.png" />。</p><p class="introTit">主观题</p><p>1、设z=<img src="https://img2.meite.com/questions/202212/01638850ce9c0cf.png" />,求<img src="https://img2.meite.com/questions/202212/01638850db3ea82.png" />。</p><p>答 案:解:令u=x+2y,v=x<sup>2</sup>+y<sup>2</sup>,根据多元函数的复合函数求导法则得<img src="https://img2.meite.com/questions/202212/0163885103b1d1a.png" /><img src="https://img2.meite.com/questions/202212/016388511424444.png" /></p><p>2、求微分方程<img src="https://img2.meite.com/questions/202211/176375dfbff1b24.png" />的通解.</p><p>答 案:解:原方程对应的齐次方程为<img src="https://img2.meite.com/questions/202211/176375dfd275b10.png" />。特征方程为,r<sup>2</sup>+3r+2=0,特征值为r<sub>1</sub>=-2,r<sub>2</sub>=-1。齐次方程的通解为y=C<sub>1</sub>e<sup>-2x</sup>+C<sub>2</sub>e<sup>-x</sup>。<br />设特解为y*=Aex,代入原方程有6A=6,得A=1。<br />所以原方程的通解为y=C<sub>1</sub>e<sup>-2x</sup>+C<sub>2</sub>e<sup>-X</sup>+e<sup>x</sup>(C1,C2为任意常数)。</p><p>3、用围墙围成216m<sup>2</sup>的一块矩形场地,正中间用一堵墙将其隔成左右两块,此场地长和宽各为多少时建筑材料最省?</p><p>答 案:解:设宽为xm,则长为<img src="https://img2.meite.com/questions/202211/3063870adf89693.png" />m,围墙总长为<img src="https://img2.meite.com/questions/202211/3063870af1d23ef.png" />,<img src="https://img2.meite.com/questions/202211/3063870affb9ef0.png" />,令y'=0,得x=±12,x=12不合题意舍去。所以x=12m是唯一驻点,而<img src="https://img2.meite.com/questions/202211/3063870b1e94dfa.png" />,故<img src="https://img2.meite.com/questions/202211/3063870b2c993b4.png" />所以x=12m时y最小,即长为18m,宽为12m时建筑材料最省。</p><p class="introTit">填空题</p><p>1、<img src="https://img2.meite.com/questions/202211/186376e17e3e3db.png" />=()。</p><p>答 案:x-x<sup>2</sup>+C</p><p>解 析:<img src="https://img2.meite.com/questions/202211/186376e19ea093b.png" /></p><p>2、极限<img src="https://img2.meite.com/questions/202211/296385667139477.png" />=()。</p><p>答 案:<img src="https://img2.meite.com/questions/202211/296385671ae0ba5.png" /></p><p>解 析:<img src="https://img2.meite.com/questions/202211/296385673166e5f.png" />。</p><p>3、幂级数<img src="https://img2.meite.com/questions/202211/16637458e6bd9e4.png" />的收敛半径R=()。</p><p>答 案:1</p><p>解 析:对于级数<img src="https://img2.meite.com/questions/202211/16637458f013377.png" />,<img src="https://img2.meite.com/questions/202211/16637458f607186.png" />,<img src="https://img2.meite.com/questions/202211/16637458fb797e9.png" />。</p><p class="introTit">简答题</p><p>1、证明:当x>0时<img src="https://img2.meite.com/questions/202303/036401a13497bbc.png" />>1+x.  </p><p>答 案:<img src="https://img2.meite.com/questions/202303/036401aff003c5f.png" /></p>
相关题库