2024年成考专升本《高等数学二》每日一练试题08月09日
<p class="introTit">判断题</p><p>1、若<img src="https://img2.meite.com/questions/202307/1364af5780970e6.png" />,则<img src="https://img2.meite.com/questions/202307/1364af578624075.png" />。()
</p><p>答 案:错</p><p>解 析:<img src="https://img2.meite.com/questions/202212/06638ef8852e1bd.png" />所以<img src="https://img2.meite.com/questions/202212/06638ef88b66bc1.png" /> </p><p class="introTit">单选题</p><p>1、下列区间为函数f(x)=sinx的单调增区间的是().</p><ul><li>A:(0,<img src='https://img2.meite.com/questions/202212/05638d492946f83.png' />)</li><li>B:(<img src='https://img2.meite.com/questions/202212/05638d493266dac.png' />,π)</li><li>C:(<img src='https://img2.meite.com/questions/202212/05638d493723322.png' />,<img src='https://img2.meite.com/questions/202212/05638d49420c782.png' />)</li><li>D:(0,2π)</li></ul><p>答 案:A</p><p>解 析:由正弦函数的图像可知,当<img src="https://img2.meite.com/questions/202212/05638d4951ad4e4.png" />时,函数单调递增,故(0,<img src="https://img2.meite.com/questions/202212/05638d495bef241.png" />)是函数的单调增区间.</p><p>2、设y=x<sup>2</sup>+sinx+ln2,则y'=().</p><ul><li>A:2x+sinx</li><li>B:2x+cosx</li><li>C:2x+cosx+<img src='https://img2.meite.com/questions/202212/05638daa193c4cc.png' /></li><li>D:2x</li></ul><p>答 案:B</p><p>解 析:<img src="https://img2.meite.com/questions/202212/05638daa28d2084.png" />.</p><p class="introTit">主观题</p><p>1、已知<img src="https://img2.meite.com/questions/202212/06638ee16c84520.png" />,求a.</p><p>答 案:解:<img src="https://img2.meite.com/questions/202212/06638ee1b6b784d.png" /><img src="https://img2.meite.com/questions/202212/06638ee1920c20f.png" /><img src="https://img2.meite.com/questions/202212/06638ee1c66ffc6.png" />.</p><p>2、证明:当x>1时,x>1+lnx.</p><p>答 案:证:设f(x)=x-1-lnx,则f'(x)=<img src="https://img2.meite.com/questions/202212/05638da08c22129.png" />.当x>1时,f'(x)>0,则f(x)单调上升.所以当x>1时,f(x)>f(1)=0,即x-1-lnx>0,得x>1+lnx.</p><p class="introTit">填空题</p><p>1、若<img src="https://img2.meite.com/questions/202303/216419534818be6.png" />则<img src="https://img2.meite.com/questions/202303/216419534fd2d4f.png" />
</p><p>答 案:-1</p><p>解 析:<img src="https://img2.meite.com/questions/202303/216419536902afd.png" /><img src="https://img2.meite.com/questions/202303/2164195372bdb8a.png" /> 注:注意导数定义的结构特点.<img src="https://img2.meite.com/questions/202303/216419537e96e07.png" />
</p><p>2、若<img src="https://img2.meite.com/questions/202212/06638eb1a743e93.png" />则<img src="https://img2.meite.com/questions/202212/06638eb1af30844.png" />=()</p><p>答 案:<img src="https://img2.meite.com/questions/202212/06638eb1bfc9efd.png" /></p><p>解 析:<img src="https://img2.meite.com/questions/202212/06638eb1cf29844.png" /></p><p class="introTit">简答题</p><p>1、计算<img src="https://img2.meite.com/questions/202303/076406da7743065.png" />
</p><p>答 案:<img src="https://img2.meite.com/questions/202303/076406e36bd4a94.png" /></p><p>2、求函数<img src="https://img2.meite.com/questions/202212/06638eda5371cb6.png" />在<img src="https://img2.meite.com/questions/202212/06638eda6200b10.png" />条件下的极值及极值点.
</p><p>答 案:令<img src="https://img2.meite.com/questions/202212/06638edaa126965.png" />于是<img src="https://img2.meite.com/questions/202212/06638edae805615.png" />
求解方程组<img src="https://img2.meite.com/questions/202212/06638edaf64e62d.png" />得其驻点<img src="https://img2.meite.com/questions/202212/06638edb03b2e79.png" />故点<img src="https://img2.meite.com/questions/202212/06638edb0dd4e52.png" />为极值点,且极值为<img src="https://img2.meite.com/questions/202212/06638edb1cb8c40.png" /></p>