2024年成考专升本《高等数学一》每日一练试题08月08日
<p class="introTit">单选题</p><p>1、设<img src="https://img2.meite.com/questions/202211/176375fffdc6fce.png" />与<img src="https://img2.meite.com/questions/202211/176376000a56c70.png" />都为正项级数,且<img src="https://img2.meite.com/questions/202211/1763760017d685f.png" />则下列结论正确的是()。</p><ul><li>A:若<img src='https://img2.meite.com/questions/202211/176376003a44e7a.png' />收敛,则<img src='https://img2.meite.com/questions/202211/1763760048b1d0a.png' />收敛</li><li>B:若<img src='https://img2.meite.com/questions/202211/176376005457117.png' />发散,则<img src='https://img2.meite.com/questions/202211/176376006229a54.png' />发散</li><li>C:若<img src='https://img2.meite.com/questions/202211/1763760080cc99e.png' />收敛,则<img src='https://img2.meite.com/questions/202211/17637600916ac24.png' />收敛</li><li>D:若<img src='https://img2.meite.com/questions/202211/176376009e49fa5.png' />收敛,则<img src='https://img2.meite.com/questions/202211/17637600a929d79.png' />发散</li></ul><p>答 案:C</p><p>解 析:由正项级数的比较判别法可知,若<img src="https://img2.meite.com/questions/202211/17637600ba270c9.png" />都为正项级数,且<img src="https://img2.meite.com/questions/202211/17637600c938b5b.png" />则当<img src="https://img2.meite.com/questions/202211/17637600d887cb8.png" />收敛时,可得知<img src="https://img2.meite.com/questions/202211/17637600e8480be.png" />必定收敛.</p><p>2、过点(1,0,0),(0,1,0),(0,0,1)的平面方程为()。</p><ul><li>A:x+y+z=1</li><li>B:2x+y+z=1</li><li>C:x+2y+z=1</li><li>D:z+y+2z=1</li></ul><p>答 案:A</p><p>解 析:方法一:设所求平面方程为Ax+By+Cz+D=0.由于点(1,0,0),(0,1,0),(0,0,1)在平面上,将上述三点坐标分别代入所设方程,可得A+D=0,B+D=0,C+D=0,即A=B=C=-D,再代回方程可得x+y+z=1。方法二:由于点(1,0,0),(0,1,0),(0,0,1)分别位于x轴、y轴、z轴上,可由平面的截距式方程得出x+y+z=1即为所求平面方程。</p><p>3、当x→0时,<img src="https://img2.meite.com/questions/202303/036401aa8d87bb3.png" />为x的()
</p><ul><li>A:高阶无穷小量</li><li>B:等价无穷小量</li><li>C:同阶但不等价无穷小量</li><li>D:低阶无穷小量</li></ul><p>答 案:A</p><p>解 析:由题可知<img src="https://img2.meite.com/questions/202303/036401aa7d80577.png" />,故<img src="https://img2.meite.com/questions/202303/036401aa90e5aba.png" />是x的高阶无穷小量。</p><p class="introTit">主观题</p><p>1、设y=㏑x,求y<sup>(n)</sup>。</p><p>答 案:解:<img src="https://img2.meite.com/questions/202211/30638702f6e629d.png" />。</p><p>2、曲线y<sup>2</sup>+2xy+3=0上哪点的切线与x轴正向所夹的角为<img src="https://img2.meite.com/questions/202211/306387084c6472d.png" />?</p><p>答 案:解:将y<sup>2</sup>+2xy+3=0对x求导,得<img src="https://img2.meite.com/questions/202211/3063870d95a64b6.png" />欲使切线与x轴正向所夹的角为<img src="https://img2.meite.com/questions/202211/306387084c6472d.png" />,只要切线的斜率为1,即<img src="https://img2.meite.com/questions/202211/30638709b34c86f.png" />亦即x+2y=0,设切点为(x<sub>0</sub>,y<sub>0</sub>),则x<sub>0</sub>+2y<sub>0</sub>=0①<br />又切点在曲线上,即y<sub>0</sub><sup>2</sup>+2x<sub>0</sub>y<sub>0</sub>+3=0②<br />由①,②得y<sub>0</sub>=±1,x<sub>0</sub>=±2<br />即曲线上点(-2,1),(2,-1)的切线与x轴正向所夹的角为<img src="https://img2.meite.com/questions/202211/306387084c6472d.png" />。</p><p>3、求<img src="https://img2.meite.com/questions/202211/2963856d739281b.png" /></p><p>答 案:解:<img src="https://img2.meite.com/questions/202211/2963856d85b32dd.png" /><img src="https://img2.meite.com/questions/202211/2963856d978d53a.png" />。</p><p class="introTit">填空题</p><p>1、设f'(1)=1,则<img src="https://img2.meite.com/questions/202211/306386b3d3a05ce.png" />=()。</p><p>答 案:<img src="https://img2.meite.com/questions/202211/306386b3df01fbb.png" /></p><p>解 析:<img src="https://img2.meite.com/questions/202211/306386b3f815a72.png" />。</p><p>2、<img src="https://img2.meite.com/questions/202211/306387222708e5d.png" />=()。</p><p>答 案:<img src="https://img2.meite.com/questions/202211/306387223355c70.png" /></p><p>解 析:<img src="https://img2.meite.com/questions/202211/306387223f883ee.png" /><img src="https://img2.meite.com/questions/202211/306387224e63d02.png" /></p><p>3、幂级数<img src="https://img2.meite.com/questions/202212/0163885c51c8bb3.png" />的收敛半径为()。</p><p>答 案:1</p><p>解 析:<img src="https://img2.meite.com/questions/202212/0163885c5fa0d30.png" />是最基本的幂级数之一,a<sub>n</sub>=1,<img src="https://img2.meite.com/questions/202212/0163885c84c560b.png" />,故收敛半径为1。</p><p class="introTit">简答题</p><p>1、计算<img src="https://img2.meite.com/questions/202405/166645c48ae9784.png" />
</p><p>答 案:<img src="https://img2.meite.com/questions/202405/166645c49761600.png" /></p>