当前位置:首页 > 考试
>英语
>考试问答
>2024年成考高起点《数学(文史)》每日一练试题08月05日
2024年成考高起点《数学(文史)》每日一练试题08月05日
<p class="introTit">单选题</p><p>1、已知函数f(x)的定义域为R,且满足f(2x)=<img src="https://img2.meite.com/questions/202303/296423a4f003da6.png" />,则f(x)的反函数为()</p><ul><li>A:<img src='https://img2.meite.com/questions/202303/296423a506c2ca4.png' /></li><li>B:<img src='https://img2.meite.com/questions/202303/296423a50aa8fc5.png' /></li><li>C:<img src='https://img2.meite.com/questions/202303/296423a51284df7.png' /></li><li>D:<img src='https://img2.meite.com/questions/202303/296423a516a6101.png' /></li></ul><p>答 案:B</p><p>解 析:令2x=t,则x=<img src="https://img2.meite.com/questions/202303/296423a5d090a18.png" /> <img src="https://img2.meite.com/questions/202303/296423a5d7d5daa.png" />
</p><p>2、函数<img src="https://img2.meite.com/questions/202303/14641028ec3037a.png" />的图像与直线y=4的交点坐标为()</p><ul><li>A:(0,4)</li><li>B:(4,64)</li><li>C:(1,4)</li><li>D:(4,16)</li></ul><p>答 案:C</p><p>解 析:令y=4<sup>x</sup>=4,解得x=1,故所求交点为(1,4).</p><p>3、已知<img src="https://img2.meite.com/questions/202303/14641027b0e9511.png" />,则sin2α=()</p><ul><li>A:<img src='https://img2.meite.com/questions/202303/14641027d7193ea.png' /></li><li>B:<img src='https://img2.meite.com/questions/202303/14641027dcded6f.png' /></li><li>C:<img src='https://img2.meite.com/questions/202303/14641027e2be0ff.png' /></li><li>D:<img src='https://img2.meite.com/questions/202303/14641027e75615d.png' /></li></ul><p>答 案:D</p><p>解 析:<img src="https://img2.meite.com/questions/202303/1464102b8ba4635.png" />两边平方得<img src="https://img2.meite.com/questions/202303/1464102bb0eb6cc.png" /><img src="https://img2.meite.com/questions/202303/1464102bb4c5429.png" />,故<img src="https://img2.meite.com/questions/202303/1464102bc8067d1.png" /></p><p>4、不等式|2x-3|≤1的解集为()</p><ul><li>A:{x|1≤x≤2}</li><li>B:{x|x≤-1或x≥2}</li><li>C:{x|1≤x≤3}</li><li>D:{x|2≤x≤3}</li></ul><p>答 案:A</p><p>解 析:<img src="https://img2.meite.com/questions/202303/2964239aeb5ea0d.png" /><img src="https://img2.meite.com/questions/202303/2964239afad8c35.png" />故原不等式的解集为{x|1≤x≤2}</p><p class="introTit">主观题</p><p>1、已知等差数列<img src="https://img2.meite.com/questions/202303/296423eaf9717d6.png" />前n项和<img src="https://img2.meite.com/questions/202303/296423eb032d219.png" />
(Ⅰ)求通项<img src="https://img2.meite.com/questions/202303/296423eb1a4ebf5.png" />的表达式
(Ⅱ)求<img src="https://img2.meite.com/questions/202303/296423eb26c2214.png" />的值
</p><p>答 案:(Ⅰ)当n=1时,由<img src="https://img2.meite.com/questions/202303/296423eb432a645.png" />得<img src="https://img2.meite.com/questions/202303/296423eb5068b03.png" /> <img src="https://img2.meite.com/questions/202303/296423eb59a45cd.png" />
<img src="https://img2.meite.com/questions/202303/296423eb6100c03.png" />
也满足上式,故<img src="https://img2.meite.com/questions/202303/296423eb755b7df.png" />=1-4n(n≥1)
(Ⅱ)由于数列<img src="https://img2.meite.com/questions/202303/296423eb93e2df0.png" />是首项为<img src="https://img2.meite.com/questions/202303/296423eba5a3367.png" />公差为d=-4的等差数列,所以<img src="https://img2.meite.com/questions/202303/296423ebc29c045.png" />是首项为<img src="https://img2.meite.com/questions/202303/296423ebe5ba947.png" />公差为d=-8,项数为13的等差数列,于是由等差数列前n项和公式得:
<img src="https://img2.meite.com/questions/202303/296423ec1ac9811.png" /><img src="https://img2.meite.com/questions/202303/296423ec20a013e.png" />
</p><p>2、在△ABC中,B=120°,C=30°,BC=4,求△ABC的面积.</p><p>答 案:因为A= 180°-B-C=30°,所以AB = BC=4.因此△ABC的面积<img src="https://img2.meite.com/questions/202303/1564111c8c97743.png" /></p><p>3、已知函数f(x)=(x-4)(x2-a)。(I)求f’(x);<br />(Ⅱ)若f’(-1)=8,求f(x)在区间[0,4]的最大值与最小值。</p><p>答 案:(I)f'(x) =(x-4)'(x<sup>2</sup>-a)+(x-4)(x<sup>2</sup>-a)’
=x<sup>2</sup>-a+2x(x-4)
=3x<sup>2</sup>-8x-a.
(Ⅱ)由于f’(-1)=3+8-a=8,得a=3.
令f'(x)=3x<sup>2</sup>-8x-3=0,解得x1=3,<img src="https://img2.meite.com/questions/202404/2066238195d9945.png" />(舍去)又f(0)=12,f(3)=-6,f(4)=0所以在区间[0,4]上函数最大值为12,最小值为-6</p><p>4、已知抛物线C:y2=2px(p>0)的焦点到准线的距离为1。(I)求C的方程;<br />(Ⅱ)若A(1,m)(m>0)为C上一点,O为坐标原点,求C上另一点B的坐标,使得OA⊥OB。</p><p>答 案:(I)由题意,该抛物线的焦点到准线的距离为<img src="https://img2.meite.com/questions/202404/20662381634105d.png" /> 所以抛物线C的方程为y<sup>2</sup>=2x.
(Ⅱ)因A(l,m)(m>0)为C上一点,故有m<sup>2</sup>=2,
可得 m=<img src="https://img2.meite.com/questions/202404/206623816da9881.png" />因此A点坐标为<img src="https://img2.meite.com/questions/202404/20662381732cfb3.png" />
设B点坐标为<img src="https://img2.meite.com/questions/202404/2066238179d51e4.png" /><img src="https://img2.meite.com/questions/202404/20662381806c6f7.png" /><img src="https://img2.meite.com/questions/202404/2066238187c9047.png" /></p><p class="introTit">填空题</p><p>1、设<img src="https://img2.meite.com/questions/202303/2964239c3b4ac2f.png" />则<img src="https://img2.meite.com/questions/202303/2964239c42d80d7.png" /></p><p>答 案:-1</p><p>解 析:<img src="https://img2.meite.com/questions/202303/2964239ca8a1cc9.png" /> <img src="https://img2.meite.com/questions/202303/2964239cb367f80.png" />
<img src="https://img2.meite.com/questions/202303/2964239cc4f078f.png" />
</p><p>2、函数y=-x²+ax图像的对称轴为x=2,则a=______。</p><p>答 案:4
</p><p>解 析:本题主要考查的知识点为二次函数的性质。 由题意,该函数图像的对称轴为<img src="https://img2.meite.com/questions/202404/20662381471af77.png" />得a=4。</p>