2024年成考专升本《高等数学一》每日一练试题08月04日

聚题库
08/04
<p class="introTit">单选题</p><p>1、级数<img src="https://img2.meite.com/questions/202212/01638856f7a8848.png" />收敛是级数<img src="https://img2.meite.com/questions/202212/016388570703d9c.png" />收敛的()。</p><ul><li>A:充分条件</li><li>B:必要条件</li><li>C:充分必要条件</li><li>D:既非充分也非必要条件</li></ul><p>答 案:A</p><p>解 析:级数<img src="https://img2.meite.com/questions/202212/0163885719e910b.png" />收敛为绝对收敛,所以级数<img src="https://img2.meite.com/questions/202212/01638857283508f.png" />必然收敛;但级数<img src="https://img2.meite.com/questions/202212/016388574bc9a79.png" />收敛不一定能得到级数<img src="https://img2.meite.com/questions/202212/01638857637f038.png" />收敛,所以为充分非必要条件。</p><p>2、当x→0时,<img src="https://img2.meite.com/questions/202211/2863848346e0955.png" />与1-cosx比较,可得()。</p><ul><li>A:<img src='https://img2.meite.com/questions/202211/286384835ef41b5.png' />是较1-cosx高阶的无穷小量</li><li>B:<img src='https://img2.meite.com/questions/202211/286384836049dd1.png' />是较1-cosx低阶的无穷小量</li><li>C:<img src='https://img2.meite.com/questions/202211/2863848361ac933.png' />与1-cosx是同阶无穷小量,但不是等价无穷小量</li><li>D:<img src='https://img2.meite.com/questions/202211/2863848363a9f99.png' />与1-cosx是等价无穷小量</li></ul><p>答 案:B</p><p>解 析:因为<img src="https://img2.meite.com/questions/202211/28638483a1af7dc.png" />,所以<img src="https://img2.meite.com/questions/202211/28638483ac91a76.png" />是较1-cosx的低阶无穷小量。</p><p>3、<img title="高等数学一(专升本),历年真题,2016年成人高等《高等数学(一)》(专升本)真题" src="https://img2.meite.com/question/2022-03/622a31c754f7e.png" alt="高等数学一(专升本),历年真题,2016年成人高等《高等数学(一)》(专升本)真题" />()</p><ul><li>A:1/2</li><li>B:1</li><li>C:2</li><li>D:3</li></ul><p>答 案:C</p><p class="introTit">主观题</p><p>1、求<img src="https://img2.meite.com/questions/202211/166374817022206.png" /></p><p>答 案:解:利用洛必达法则,得<img src="https://img2.meite.com/questions/202211/166374817771806.png" /></p><p>2、求微分方程<img src="https://img2.meite.com/questions/202212/03638af2ff119ae.png" />的通解.</p><p>答 案:解:微分方程的特征方程为<img src="https://img2.meite.com/questions/202212/03638af30c475d6.png" />,解得<img src="https://img2.meite.com/questions/202212/03638af31b7e1c1.png" />。故齐次方程的通解为<img src="https://img2.meite.com/questions/202212/03638af328bf5d9.png" />。微分方程的特解为<img src="https://img2.meite.com/questions/202212/03638af3330ebfe.png" />,将其代入微分方程得<img src="https://img2.meite.com/questions/202212/03638af340b1228.png" />,则a=-1。故微分方程的通解为<img src="https://img2.meite.com/questions/202212/03638af355d9b6c.png" />。</p><p>3、计算<img src="https://img2.meite.com/questions/202109/1661429dcbbed55.png" width="107" /></p><p>答 案:<img src="https://img2.meite.com/questions/202109/1661429de15b12a.png" width="259" /></p><p class="introTit">填空题</p><p>1、幂级数<img src="https://img2.meite.com/questions/202303/176414046fa95c8.png" />的收敛半径为()</p><p>答 案:3</p><p>解 析:所给幂级数通项为<img src="https://img2.meite.com/questions/202303/176414049a92cf3.png" />则<img src="https://img2.meite.com/questions/202303/17641404aae13b4.png" /><img src="https://img2.meite.com/questions/202303/17641404b621a4a.png" />所以收敛半径R=3</p><p>2、过点(1,0,-1)与平面3x-y-z-2=0平行的平面的方程为()</p><p>答 案:3x-y-z-4=0</p><p>解 析:平面3x-y-z-2=0的法向量为(3,-1,-1),所求平面与其平行,故所求的平面的法向量为(3,-1,-1),由平面的点法式方程得所求平面方程为3(x-1)-(y-0)-(z+1)=0,及3x-y-z-4=0。</p><p>3、当P=()时,级数<img src="https://img2.meite.com/questions/202303/176414182db42ce.png" />收敛</p><p>答 案:>1</p><p>解 析:因<img src="https://img2.meite.com/questions/202303/1764141856db05c.png" />当P>1时收敛,由比较判别法知P>1时<img src="https://img2.meite.com/questions/202303/1764141885bf666.png" />收敛。</p><p class="introTit">简答题</p><p>1、设f(x)=<img src="https://img2.meite.com/questions/202303/1764140cba28156.png" />在x=0连续,试确定A,B.</p><p>答 案:<img src="https://img2.meite.com/questions/202303/1764140ce7d0fb9.png" /> <img src="https://img2.meite.com/questions/202303/1764140cf387f0c.png" /> 欲使f(x)在x=0处连续,应有2A=4=B+1,所以A=2,B=3.  </p>
相关题库