2024年成考专升本《高等数学一》每日一练试题08月02日

聚题库
08/02
<p class="introTit">单选题</p><p>1、在空间直角坐标系中,方程x<sup>2</sup>+y<sup>2</sup>=1表示的曲面是()。</p><ul><li>A:柱面</li><li>B:球面</li><li>C:锥面</li><li>D:旋转抛物面</li></ul><p>答 案:A</p><p>解 析:在空间直角坐标系中方程x<sup>2</sup>+y<sup>2</sup>=1中缺少变量z,它表示的曲面为母线平行于z轴的柱面。</p><p>2、<img src="https://img2.meite.com/questions/202212/03638ae390d4700.png" />()。</p><ul><li>A:0</li><li>B:1</li><li>C:<img src='https://img2.meite.com/questions/202212/03638ae39c54e94.png' /></li><li>D:<img src='https://img2.meite.com/questions/202212/03638ae3a5e5de9.png' /></li></ul><p>答 案:D</p><p>解 析:<img src="https://img2.meite.com/questions/202212/03638ae3b60d066.png" />。</p><p>3、下列各点在球面(x-1)<sup>2</sup>+y<sup>2</sup>+(z-1)<sup>2</sup>=1上的是()。</p><ul><li>A:(1,0,1)</li><li>B:(2,0,2)</li><li>C:(1,1,1)</li><li>D:(1,1,2)</li></ul><p>答 案:C</p><p>解 析:将各个点代入球面公式可知(1,1,1)在球面上。</p><p class="introTit">主观题</p><p>1、设z=f(x,y)是由方程<img src="https://img2.meite.com/questions/202212/016388512702c56.png" />所确定,求<img src="https://img2.meite.com/questions/202212/0163885132b6538.png" />。</p><p>答 案:解:由<img src="https://img2.meite.com/questions/202212/0163885140e7d04.png" />得全微分方程:<img src="https://img2.meite.com/questions/202212/0163885152cf27a.png" />化简得<img src="https://img2.meite.com/questions/202212/016388516e89256.png" /><img src="https://img2.meite.com/questions/202212/016388517cdc468.png" />所以<img src="https://img2.meite.com/questions/202212/01638851ab158db.png" /><img src="https://img2.meite.com/questions/202212/01638851ba75287.png" />。</p><p>2、设函数<img src="https://img2.meite.com/questions/202211/176375db759e97f.png" />,求f(x)的极大值</p><p>答 案:解:<img src="https://img2.meite.com/questions/202211/176375dba527fd6.png" />当x<-1或x>3时,f′(x)>0,f(x)单调增加;当-1<x<3时,f′(x)<0,f(x)单调减少。<br />故x<sub>1</sub>=-1是f(x)的极大值点,<br />极大值为f(-1)=5。</p><p>3、设<img src="https://img2.meite.com/questions/202212/03638aff4f737d0.png" />存在且<img src="https://img2.meite.com/questions/202212/03638aff59d37e0.png" />,求<img src="https://img2.meite.com/questions/202212/03638aff6554eac.png" /></p><p>答 案:解:设<img src="https://img2.meite.com/questions/202212/03638aff7078ded.png" />对<img src="https://img2.meite.com/questions/202212/03638aff830ad7a.png" />两边同时求极限,得<img src="https://img2.meite.com/questions/202212/03638affa03127b.png" />,即<img src="https://img2.meite.com/questions/202212/03638affaad78d4.png" />,得<img src="https://img2.meite.com/questions/202212/03638affb8a0ed1.png" />。</p><p class="introTit">填空题</p><p>1、设<img src="https://img2.meite.com/questions/202211/176375a235be9a3.png" />,则<img src="https://img2.meite.com/questions/202211/176375a2449fce9.png" />()。</p><p>答 案:2e<sup>2</sup></p><p>解 析:<img src="https://img2.meite.com/questions/202211/176375a2610bc67.png" />,则<img src="https://img2.meite.com/questions/202211/176375a26dd4a8b.png" /></p><p>2、交换二次积分的积分次序,<img src="https://img2.meite.com/questions/202212/0163884aa14b346.png" />()。</p><p>答 案:<img src="https://img2.meite.com/questions/202212/0163884ab4284fb.png" /></p><p>解 析:由题设有<img src="https://img2.meite.com/questions/202212/0163884ac5b442b.png" />从而<img src="https://img2.meite.com/questions/202212/0163884adca8d6c.png" />故交换次序后二次积分为<img src="https://img2.meite.com/questions/202212/0163884aebe3b55.png" />。</p><p>3、<img src="https://img2.meite.com/questions/202211/296385675962fc3.png" />=()。</p><p>答 案:1</p><p>解 析:<img src="https://img2.meite.com/questions/202211/296385676b1b812.png" />。</p><p class="introTit">简答题</p><p>1、求函数f(x)=<img src="https://img2.meite.com/questions/202303/036401a047d0835.png" />的单调区间。  </p><p>答 案:<img src="https://img2.meite.com/questions/202303/036401af525c8e7.png" /> <img src="https://img2.meite.com/questions/202303/036401af6400cd0.png" /><img src="https://img2.meite.com/questions/202303/036401af706ad1e.png" /> <img src="https://img2.meite.com/questions/202303/036401af8094320.png" /><img src="https://img2.meite.com/questions/202303/036401af8b285df.png" /></p>
相关题库