2024年成考专升本《高等数学一》每日一练试题07月30日

聚题库
07/30
<p class="introTit">单选题</p><p>1、微分方程<img src="https://img2.meite.com/questions/202211/16637454177b20a.png" />的阶数为()。</p><ul><li>A:1</li><li>B:2</li><li>C:3</li><li>D:4</li></ul><p>答 案:A</p><p>解 析:微分方程<img src="https://img2.meite.com/questions/202211/166374541f0f375.png" />所含有未知函数y的导数最高阶数为1,为一阶微分方程。</p><p>2、设y=e<sup>2x</sup>,则dy=()。</p><ul><li>A:e<sup>2x</sup>dx</li><li>B:2e<sup>2x</sup>dx</li><li>C:<img src='https://img2.meite.com/questions/202211/176375aebd68986.png' /></li><li>D:-2e<sup>2x</sup>dx</li></ul><p>答 案:B</p><p>解 析:由复合函数的求导法则可知<img src="https://img2.meite.com/questions/202211/176375aed18ece4.png" />,故<img src="https://img2.meite.com/questions/202211/176375aee148158.png" />。</p><p>3、已知<img src="https://img2.meite.com/questions/202211/3063871e8c3c821.png" />,则<img src="https://img2.meite.com/questions/202211/3063871ea1389f4.png" />()。</p><ul><li>A:-cosx+C</li><li>B:cosx+C</li><li>C:<img src='https://img2.meite.com/questions/202211/3063871eb2afdac.png' /></li><li>D:<img src='https://img2.meite.com/questions/202211/3063871ebc4801d.png' /></li></ul><p>答 案:C</p><p>解 析:已知<img src="https://img2.meite.com/questions/202211/3063871ecc7110c.png" />,在此式两侧对cosx求积分,得<img src="https://img2.meite.com/questions/202211/3063871eded0d64.png" />有<img src="https://img2.meite.com/questions/202211/3063871ef7dbe12.png" /></p><p class="introTit">主观题</p><p>1、设曲线x=√y、y=2及x=0所围成的平面图形为D.(1)求平面图形D的面积S。<br />(2)求平面图形D绕y轴旋转一周所生成旋转体的体积Vy。</p><p>答 案:解:D的图形见右图阴影部分。<img src="https://img2.meite.com/questions/202211/186376ee948d92a.png" />(1)由<img src="https://img2.meite.com/questions/202211/186376eeac047bd.png" />解得<img src="https://img2.meite.com/questions/202211/186376eec7a8197.png" />于是<img src="https://img2.meite.com/questions/202211/186376eeea6d7fd.png" /><br />(2)<img src="https://img2.meite.com/questions/202211/186376eefb038fe.png" /></p><p>2、求微分方程<img src="https://img2.meite.com/questions/202212/03638af2ff119ae.png" />的通解.</p><p>答 案:解:微分方程的特征方程为<img src="https://img2.meite.com/questions/202212/03638af30c475d6.png" />,解得<img src="https://img2.meite.com/questions/202212/03638af31b7e1c1.png" />。故齐次方程的通解为<img src="https://img2.meite.com/questions/202212/03638af328bf5d9.png" />。微分方程的特解为<img src="https://img2.meite.com/questions/202212/03638af3330ebfe.png" />,将其代入微分方程得<img src="https://img2.meite.com/questions/202212/03638af340b1228.png" />,则a=-1。故微分方程的通解为<img src="https://img2.meite.com/questions/202212/03638af355d9b6c.png" />。</p><p>3、设有一圆形薄片<img src="https://img2.meite.com/questions/202212/016388539282716.png" />,在其上一点M(x,y)的面密度与点M到点(0,0)的距离成正比,求分布在此薄片上的物质的质量。</p><p>答 案:解:设密度为<img src="https://img2.meite.com/questions/202212/01638853a97290f.png" />故质量<img src="https://img2.meite.com/questions/202212/01638853c0a4ea0.png" /><img src="https://img2.meite.com/questions/202212/01638853e14485a.png" /></p><p class="introTit">填空题</p><p>1、过点M<sub>0</sub>(0,0,0)且与直线<img src="https://img2.meite.com/questions/202212/016388201fdb78c.png" />平行的直线方程为()。</p><p>答 案:<img src="https://img2.meite.com/questions/202212/016388202d784b2.png" /></p><p>解 析:所给直线的方向向量为(1,2,-1).所求直线与已给直线平行,则可取所求直线方向向量为(1,2,-1).由于所求直线过原点(0,0,0),由直线的点向式方程可知<img src="https://img2.meite.com/questions/202212/016388204b7d64b.png" />即为所求直线方程。</p><p>2、微分方程<img src="https://img2.meite.com/questions/202303/0364019f85a2899.png" />的通解为y=()  </p><p>答 案:<img src="https://img2.meite.com/questions/202303/036401ae0fc3051.png" /></p><p>解 析:将微分方程变量分离,可得<img src="https://img2.meite.com/questions/202303/036401ae31c99e2.png" />两边同时积分<img src="https://img2.meite.com/questions/202303/036401ae49ba074.png" />可得In|y|<img src="https://img2.meite.com/questions/202303/036401ae6ce75e9.png" /><img src="https://img2.meite.com/questions/202303/036401ae7812b6b.png" /></p><p>3、<img src="https://img2.meite.com/questions/202211/306387226310eea.png" />()。</p><p>答 案:<img src="https://img2.meite.com/questions/202211/306387226d94c7a.png" /></p><p>解 析:<img src="https://img2.meite.com/questions/202211/306387227bd7f3f.png" /><img src="https://img2.meite.com/questions/202211/306387228a7d785.png" /></p><p class="introTit">简答题</p><p>1、求微分方程<img src="https://img2.meite.com/questions/202303/036401a0b4bb252.png" />满足初值条件<img src="https://img2.meite.com/questions/202303/036401a0c888c77.png" />的特解  </p><p>答 案:<img src="https://img2.meite.com/questions/202303/036401afc1cb58a.png" /> <img src="https://img2.meite.com/questions/202303/036401afd313124.png" />  </p>
相关题库