2024年成考专升本《高等数学一》每日一练试题07月28日
<p class="introTit">单选题</p><p>1、设<img src="https://img2.meite.com/questions/202211/176375fe97ee3d1.png" />则y'(0)=()。</p><ul><li>A:1</li><li>B:<img src='https://img2.meite.com/questions/202211/176375fec50c33f.png' /></li><li>C:0</li><li>D:<img src='https://img2.meite.com/questions/202211/176375fed37ccc6.png' /></li></ul><p>答 案:B</p><p>解 析:<img src="https://img2.meite.com/questions/202211/176375fee36211e.png" />则<img src="https://img2.meite.com/questions/202211/176375fefe285b6.png" /><img src="https://img2.meite.com/questions/202211/176375ff15653f1.png" /></p><p>2、幂级数<img src="https://img2.meite.com/questions/202211/176375b09287764.png" />的收敛半径R=()。</p><ul><li>A:0</li><li>B:1</li><li>C:2</li><li>D:+∞</li></ul><p>答 案:B</p><p>解 析:所给幂级数为不缺项级数,<img src="https://img2.meite.com/questions/202211/176375b0a8eb9c6.png" />,因此<img src="https://img2.meite.com/questions/202211/176375b0c8cb654.png" />可知收敛半径<img src="https://img2.meite.com/questions/202211/176375b0d7caf28.png" />。</p><p>3、当x→0时,sinx·cosx与x比较是()。</p><ul><li>A:等价无穷小量</li><li>B:同阶无穷小量但不是等价无穷小量</li><li>C:高阶无穷小量</li><li>D:低阶无穷小量</li></ul><p>答 案:A</p><p>解 析:<img src="https://img2.meite.com/questions/202211/28638483332cdb7.png" />,故sinx·cosx与x是等价无穷小量。</p><p class="introTit">主观题</p><p>1、判断级数<img src="https://img2.meite.com/questions/202212/016388675422a30.png" />的敛散性。</p><p>答 案:解:令<img src="https://img2.meite.com/questions/202212/0163886766018da.png" />,则<img src="https://img2.meite.com/questions/202212/0163886777ec373.png" />,由于<img src="https://img2.meite.com/questions/202212/0163886785bde3b.png" />故有当<img src="https://img2.meite.com/questions/202212/016388678ff3e3f.png" /><1,即a>e时,该级数收敛;当<img src="https://img2.meite.com/questions/202212/016388678ff3e3f.png" />>1,即a<e时,该级数发散。</p><p>2、求<img src="https://img2.meite.com/questions/202211/166374818f129f0.png" />.</p><p>答 案:解:<img src="https://img2.meite.com/questions/202211/1663748193a34ba.png" /><img src="https://img2.meite.com/questions/202211/166374819958327.png" />=2ln2</p><p>3、求微分方程y''-9y=0的通解</p><p>答 案:解:特征方程为r<sup>2</sup>-9=0,其特征根为r<sub>1</sub>=-3,r<sub>2</sub>=3,故通解为<img src="https://img2.meite.com/questions/202211/176375ab5f15a0c.png" />(C1,C2为任意常数)</p><p class="introTit">填空题</p><p>1、若二元函数z=arctan(x<sup>2</sup>+y<sup>2</sup>),则<img src="https://img2.meite.com/questions/202212/03638aec2349ca4.png" />=()。</p><p>答 案:<img src="https://img2.meite.com/questions/202212/03638aec2ec500c.png" /></p><p>解 析:<img src="https://img2.meite.com/questions/202212/03638aec3aae1ef.png" /><img src="https://img2.meite.com/questions/202212/03638aec4aecf64.png" />。</p><p>2、微分方程y'+4y=0的通解为()。</p><p>答 案:y=Ce<sup>-4x</sup></p><p>解 析:将微分方程分离变量,得<img src="https://img2.meite.com/questions/202212/0163886de4c0350.png" />,等式两边分别积分,得<img src="https://img2.meite.com/questions/202212/0163886df7364ae.png" /></p><p>3、设区域D<img src="https://img2.meite.com/questions/202303/176414267154ab7.png" /><img src="https://img2.meite.com/questions/202303/1764142676bbd24.png" />()
</p><p>答 案:2</p><p>解 析:<img src="https://img2.meite.com/questions/202303/17641426898be6e.png" /></p><p class="introTit">简答题</p><p>1、求方程<img src="https://img2.meite.com/questions/202303/17641427a20cfc0.png" />的通解。
</p><p>答 案:<img src="https://img2.meite.com/questions/202303/17641427b60f0c0.png" /></p>