2024年成考专升本《高等数学二》每日一练试题07月16日
<p class="introTit">判断题</p><p>1、若<img src="https://img2.meite.com/questions/202307/1364af5780970e6.png" />,则<img src="https://img2.meite.com/questions/202307/1364af578624075.png" />。()
</p><p>答 案:错</p><p>解 析:<img src="https://img2.meite.com/questions/202212/06638ef8852e1bd.png" />所以<img src="https://img2.meite.com/questions/202212/06638ef88b66bc1.png" /> </p><p class="introTit">单选题</p><p>1、设函数<img src="https://img2.meite.com/questions/202212/0763904a642c61e.png" />,且f(u)二阶可导,则<img src="https://img2.meite.com/questions/202212/0763904a7629d71.png" />().</p><ul><li>A:<img src='https://img2.meite.com/questions/202212/0763904a801eadb.png' /></li><li>B:<img src='https://img2.meite.com/questions/202212/0763904a89a6782.png' /></li><li>C:<img src='https://img2.meite.com/questions/202212/0763904a91d59ed.png' /></li><li>D:<img src='https://img2.meite.com/questions/202212/0763904a9d3e2e5.png' /></li></ul><p>答 案:D</p><p>解 析:<img src="https://img2.meite.com/questions/202212/0763904aabbe104.png" />,<img src="https://img2.meite.com/questions/202212/0763904ab8b86c8.png" />.</p><p>2、设函数f(x)在(∞,+∞)上可导,且<img src="https://img2.meite.com/questions/202212/06638ee79d2f036.png" />则f'(x)等于().</p><ul><li>A:<img src='https://img2.meite.com/questions/202212/06638ee7b4e7d42.png' /></li><li>B:<img src='https://img2.meite.com/questions/202212/06638ee7bd8ce23.png' /></li><li>C:<img src='https://img2.meite.com/questions/202212/06638ee7c5e35bc.png' /></li><li>D:<img src='https://img2.meite.com/questions/202212/06638ee7cfe99f8.png' /></li></ul><p>答 案:D</p><p>解 析:函数f(x)在(-∞,+∞)上可导,故函数在(-∞,+∞)连续,<img src="https://img2.meite.com/questions/202212/06638ee84ca7cd2.png" />为常数,设<img src="https://img2.meite.com/questions/202212/06638ee85926db5.png" />,故<img src="https://img2.meite.com/questions/202212/06638ee86551a96.png" />,<img src="https://img2.meite.com/questions/202212/06638ee8746164d.png" />.</p><p class="introTit">主观题</p><p>1、求函数<img src="https://img2.meite.com/questions/202212/06638e9d593df8c.png" />的单调区间、极值、凹凸区间和拐点.</p><p>答 案:解:f(x)的定义域为(-∞,0)∪(0,+∞),<img src="https://img2.meite.com/questions/202212/06638e9e0ab8663.png" />令<img src="https://img2.meite.com/questions/202212/06638e9e1bb054a.png" />,得x=-1.令<img src="https://img2.meite.com/questions/202212/06638e9e2b16b72.png" />,得<img src="https://img2.meite.com/questions/202212/06638e9e3648082.png" /><br />列表得<img src="https://img2.meite.com/questions/202212/06638e9e500f25c.png" /><br />所以函数f(x)的单调减少区间为(-∞,-1),单调增加区间(-1,0),(0,+∞);<br />f(-1)=3为极小值,无极大值.<br />函数f(x)的凹区间为(-∞,0),(<img src="https://img2.meite.com/questions/202212/06638e9e7f27a07.png" />,+∞),凸区间为(0,<img src="https://img2.meite.com/questions/202212/06638e9e8ccbc9d.png" />),拐点坐标为(<img src="https://img2.meite.com/questions/202212/06638e9e8ccbc9d.png" />,0).</p><p>2、每次抛掷一枚骰子(6个面上分别标有数字1、2、3、4、5、6),连续抛掷2次,设A={向上的数字之和为6},求P(A).</p><p>答 案:解:基本事件数为<img src="https://img2.meite.com/questions/202212/08639181a31a4ac.png" />抛掷两次,向上的数字之和为6的事件共有5种,即(1,5),(2,4),(3,3),(4,2),(5,1).注意事件(1,5)与(5,1)是两个不同的事件:第一次出现1或5而第二次出现5或1是两个不同的结果,所以P(A)=<img src="https://img2.meite.com/questions/202212/08639181bc93971.png" />.</p><p class="introTit">填空题</p><p>1、函数<img src="https://img2.meite.com/questions/202212/05638d6748af8cf.png" />的单调增加区间是().</p><p>答 案:(1,+∞)</p><p>解 析:<img src="https://img2.meite.com/questions/202212/05638d6754affb2.png" />,当y'>0,即x>1时,函数单调增加,故函数的单调增加区间为(1,+∞).</p><p>2、<img src="https://img2.meite.com/questions/202212/076390326faaf1e.png" />=().</p><p>答 案:xcosx-sinx+C</p><p>解 析:由分部积分得<img src="https://img2.meite.com/questions/202212/076390327e91b26.png" /></p><p class="introTit">简答题</p><p>1、已知函数f(x)=ax<sup>3</sup>-bx<sup>2</sup>+cx在区间<img src="https://img2.meite.com/questions/202212/07639002a0c63f6.png" />内是奇函数,且当x=1时,f(x)有极小值<img src="https://img2.meite.com/questions/202212/07639002ba72fe4.png" />,求另一个极值及此曲线的拐点.
</p><p>答 案:f(x)=ax<sup>3</sup>-bx<sup>2</sup>+cx,<img src="https://img2.meite.com/questions/202212/07639002da708ed.png" /> 由于f(x)是奇函数,则必有x<sup>2</sup>的系数为0,即b=0.
<img src="https://img2.meite.com/questions/202212/07639003148fbf6.png" />即a+c=<img src="https://img2.meite.com/questions/202212/076390032089cb2.png" />,<img src="https://img2.meite.com/questions/202212/0763900324b36b3.png" />得3a+c=0.解得a=<img src="https://img2.meite.com/questions/202212/076390033fe0499.png" />c=<img src="https://img2.meite.com/questions/202212/0763900347cfddd.png" />
此时<img src="https://img2.meite.com/questions/202212/07639003591bd3b.png" />
令<img src="https://img2.meite.com/questions/202212/0763900361d0796.png" />得<img src="https://img2.meite.com/questions/202212/07639003674342f.png" /><img src="https://img2.meite.com/questions/202212/076390036dd8f49.png" />所以<img src="https://img2.meite.com/questions/202212/076390037794ea3.png" />为极大值,<img src="https://img2.meite.com/questions/202212/07639003826209a.png" />得x=0,x<0时,<img src="https://img2.meite.com/questions/202212/0763900396d70f8.png" />
所以(0,0)为曲线的拐点.</p><p>2、<img src="https://img2.meite.com/questions/202212/06638ed848a7535.png" />
</p><p>答 案:<img src="https://img2.meite.com/questions/202212/06638ed850df037.png" /></p>