2024年成考高起点《数学(理)》每日一练试题07月14日
<p class="introTit">单选题</p><p>1、从椭圆与x轴额右交点看短轴两端点的视角为60°的椭圆的离心率()
</p><ul><li>A:<img src='https://img2.meite.com/questions/202303/28642287ed710eb.png' /></li><li>B:<img src='https://img2.meite.com/questions/202303/28642287f182bba.png' /></li><li>C:1</li><li>D:<img src='https://img2.meite.com/questions/202303/28642287f85287f.png' /></li></ul><p>答 案:A</p><p>解 析:求椭圆的离心率,先求出a,c.(如图) <img src="https://img2.meite.com/questions/202303/286422892bd4fb5.png" /><img src="https://img2.meite.com/questions/202303/286422893b50a35.png" />,由椭圆定义知<img src="https://img2.meite.com/questions/202303/2864228950523ff.png" />
<img src="https://img2.meite.com/questions/202303/286422895c76294.png" /></p><p>2、已知集合M =(2,3,5,a),N =(1,3,4,b),若M∩N=(1,2,3),则a,b的值为
</p><ul><li>A:a=2,b=1</li><li>B:a=1,b=1</li><li>C:a=1,b= 2</li><li>D:a=1,b=5</li></ul><p>答 案:C</p><p>解 析:M∩N={2,3,5,a} ∩{1,3,4,6} ={1,2,3} 又因为M中无“1”元素,而有“a”元素,只有a=1
而N中无“2”元素,而有“b元素”,只有b=2
</p><p>3、若<img src="https://img2.meite.com/questions/202303/286422574eab213.png" />则<img src="https://img2.meite.com/questions/202303/28642257543afd6.png" />()</p><ul><li>A:<img src='https://img2.meite.com/questions/202303/286422575a7b0ce.png' /></li><li>B:<img src='https://img2.meite.com/questions/202303/286422575f5d2ea.png' /></li><li>C:<img src='https://img2.meite.com/questions/202303/28642257640e720.png' /></li><li>D:<img src='https://img2.meite.com/questions/202303/28642257690a458.png' /></li></ul><p>答 案:B</p><p>解 析:首先做出单位圆,然后根据问题的约束条件,利用三角函数线找出满足条件的a角取值范围 <img src="https://img2.meite.com/questions/202303/28642257c3e01c3.png" />
<img src="https://img2.meite.com/questions/202303/28642257d4935f9.png" />
</p><p>4、过点P(2,3)且在两轴上截距相等的直线方程为()
</p><ul><li>A:<img src='https://img2.meite.com/questions/202303/28642247fd1a957.png' /></li><li>B:<img src='https://img2.meite.com/questions/202303/2864224806409c5.png' /></li><li>C:x+y=5</li><li>D:<img src='https://img2.meite.com/questions/202303/286422481c778c0.png' /></li></ul><p>答 案:B</p><p>解 析:选项A中,<img src="https://img2.meite.com/questions/202303/28642248c79f1f7.png" />在x、y 轴上截距为 5.但答案不完整 所以选项B中有两个方程,<img src="https://img2.meite.com/questions/202303/28642248eb2ee0d.png" />在x轴上横截距与y轴上的纵截距都为0,也是相等的
选项C,虽然过点(2,3),实质上与选项A相同.选项 D,转化为:<img src="https://img2.meite.com/questions/202303/286422492c2692d.png" />答案不完整
</p><p class="introTit">主观题</p><p>1、记△ABC的内角A,B,C的对边分别为a,b,c,已知B=60°,b<sup>2</sup>=ac,求A。
</p><p>答 案:由余弦定理b<sup>2</sup>=a<sup>2</sup>+c<sup>2</sup>-2accosB,可得ac=a<sup>2</sup>+c<sup>2</sup>-ac,即a<sup>2</sup>+c<sup>2</sup>-2ac=(a-c)<sup>2</sup>=0,解得a=c。
又因为B=60°,故△ABC为等边三角形,所以A=60°</p><p>2、在正四棱柱ABCD-A'B'C'D'中,<img src="https://img2.meite.com/questions/202303/28642255fa50503.png" />
(Ⅰ)写出向量<img src="https://img2.meite.com/questions/202303/286422561b1d145.png" />关于基底{a,b,c}的分解式
(Ⅱ)求证:<img src="https://img2.meite.com/questions/202303/286422563d58cde.png" />
(Ⅲ)求证:<img src="https://img2.meite.com/questions/202303/28642256478aacd.png" />
</p><p>答 案:(Ⅰ)由题意知(如图所示) <img src="https://img2.meite.com/questions/202303/286422566983935.png" />
<img src="https://img2.meite.com/questions/202303/28642256740213a.png" /><img src="https://img2.meite.com/questions/202303/286422567c06c5d.png" />
(Ⅱ)<img src="https://img2.meite.com/questions/202303/2864225695c5fbd.png" /><img src="https://img2.meite.com/questions/202303/286422569cdc533.png" />
(Ⅲ)<img src="https://img2.meite.com/questions/202303/28642256a537b6d.png" />
由已知,a,c是正四棱柱的棱,a,b,c两两垂直
<img src="https://img2.meite.com/questions/202303/28642256d1c4379.png" />
</p><p>3、设函数f(x)=xlnx+x.(I)求曲线y=f(x)在点((1,f(1))处的切线方程;<br />(II)求f(x)的极值.</p><p>答 案:(I)f(1)=1,f'(x)=2+lnx,故f'(1)=2.所以曲线y=f(x)在点(1,f(1))处的切线方程为y=2x-1.(II)令f'(x)=0,解得<img src="https://img2.meite.com/questions/202303/1564116d2d14a94.png" />当<img src="https://img2.meite.com/questions/202303/1564116d3d33026.png" />时,f'(x)<O;当<img src="https://img2.meite.com/questions/202303/1564116d6f6aec3.png" />时,f'(x)>O.故f(x)在区间<img src="https://img2.meite.com/questions/202303/1564116db9a0764.png" />单调递减,在区间<img src="https://img2.meite.com/questions/202303/1564116dc99fc91.png" />单调递增.因此f(x)在<img src="https://img2.meite.com/questions/202303/1564116ddb842d0.png" />时取得极小值<img src="https://img2.meite.com/questions/202303/1564116de4f1b79.png" /></p><p>4、已知抛物线C:y<sup>2</sup>=2px(p>0)的焦点到准线的距离为1。
(I)求C的方程;
(Ⅱ)若A(1,m)(m>0)为C上一点,O为坐标原点,求C上另一点B的坐标,使得OA⊥OB</p><p>答 案:(I)由题意,该抛物线的焦点到准线的距离为<img src="https://img2.meite.com/questions/202404/1966222edee972e.png" />
所以抛物线C的方程为<img src="https://img2.meite.com/questions/202404/1966222ee6c66f9.png" />
(Ⅱ)因A(l,m)(m>0)为C上一点,故有m<sup>2</sup>=2,
可得<img src="https://img2.meite.com/questions/202404/1966222ef5c5007.png" />因此A点坐标为<img src="https://img2.meite.com/questions/202404/1966222efb949fc.png" />
设B点坐标为<img src="https://img2.meite.com/questions/202404/1966222f0a5cbbb.png" />则<img src="https://img2.meite.com/questions/202404/1966222f11e9340.png" />
因为<img src="https://img2.meite.com/questions/202404/1966222f17c1b05.png" />则有<img src="https://img2.meite.com/questions/202404/1966222f1dce70a.png" />
即<img src="https://img2.meite.com/questions/202404/1966222f27533ea.png" />解得x0=4
所以B点的坐标为<img src="https://img2.meite.com/questions/202404/1966222f308351e.png" />
</p><p class="introTit">填空题</p><p>1、过点(2,0)作圆x2+y2=1的切线,切点的横坐标为()。</p><p>答 案:<img src="https://img2.meite.com/questions/202404/20662380f056b37.png" /></p><p>解 析:本题主要考查的知识点为圆的切线.
设切点(x0,y0)则有<img src="https://img2.meite.com/questions/202404/20662380f985f55.png" />
即<img src="https://img2.meite.com/questions/202404/20662381033a418.png" /><img src="https://img2.meite.com/questions/202404/206623810c425f9.png" />所以<img src="https://img2.meite.com/questions/202404/2066238119981c7.png" />故切点横坐标为<img src="https://img2.meite.com/questions/202404/206623812263a88.png" />
</p><p>2、函数y=-x<sup>2</sup>+ax图像的对称轴为x=2,则a=______。
</p><p>答 案:4</p><p>解 析:本题主要考查的知识点为二次函数的性质
由题意,该函数图像的对称轴为<img src="https://img2.meite.com/questions/202404/1966222eb326e16.png" /></p>