2024年成考高起点《数学(文史)》每日一练试题07月12日

聚题库
07/12
<p class="introTit">单选题</p><p>1、设集合<img src="https://img2.meite.com/questions/202404/20662380625546f.png" /> ()。</p><ul><li>A:{1}</li><li>B:{-1}</li><li>C:{—1,1)</li><li>D:<img src='https://img2.meite.com/questions/202404/206623806f87ed7.png' /></li></ul><p>答 案:A</p><p>解 析:本题主要考查的知识点为集合的运算。 由题意M={-1,1},N={1},所以M∩N=(1}。  </p><p>2、对于函数<img src="https://img2.meite.com/questions/202303/146410291ccb5fa.png" />,有下列两个命题:①如果c=o,那么y=f(x)的图像经过坐标原点②如果a<0,那么y=f(x)的图像与x轴有公共点<br />则()</p><ul><li>A:①②都为真命题</li><li>B:①为真命题,②为假命题</li><li>C:①为假命题,②为真命题</li><li>D:①②都为假命题</li></ul><p>答 案:B</p><p>解 析:若c=0,则函数f(x)=ax<sup>2</sup>+bx过坐标原点,故①为真命题;若a<0,而<img src="https://img2.meite.com/questions/202303/1464102cda646cd.png" />,则函数f(x)=ax<sup>2</sup>+bx+c的图像开口向下,与x轴没有交点,故②为假命题。因此选B选项。</p><p>3、一个袋子中装有标号分别为1,2,3,4的四个球,采用有放回的方式从袋中摸球两次,每次摸出一个球,则恰有一次摸出2号球的概率为()。</p><ul><li>A:<img src='https://img2.meite.com/questions/202404/2066237f6fcf38b.png' /></li><li>B:<img src='https://img2.meite.com/questions/202404/2066237f76e958b.png' /></li><li>C:<img src='https://img2.meite.com/questions/202404/2066237f7c1c62b.png' /></li><li>D:<img src='https://img2.meite.com/questions/202404/2066237f81456d7.png' /></li></ul><p>答 案:C</p><p>解 析:本题主要考查的知识点为独立重复试验的概率。 所求概率为<img src="https://img2.meite.com/questions/202404/2066237f8658c10.png" /></p><p>4、不等式|2x-3|≤1的解集为()</p><ul><li>A:{x|1≤x≤2}</li><li>B:{x|x≤-1或x≥2}</li><li>C:{x|1≤x≤3}</li><li>D:{x|2≤x≤3}</li></ul><p>答 案:A</p><p>解 析:<img src="https://img2.meite.com/questions/202303/2964239aeb5ea0d.png" /><img src="https://img2.meite.com/questions/202303/2964239afad8c35.png" />故原不等式的解集为{x|1≤x≤2}</p><p class="introTit">主观题</p><p>1、设椭圆的中心是坐标原点,长轴在x轴上,离心率<img src="https://img2.meite.com/questions/202303/2964239c71aeb01.png" />已知点P<img src="https://img2.meite.com/questions/202303/2964239c7e7d039.png" />到圆上的点的最远距离是<img src="https://img2.meite.com/questions/202303/2964239c8cba609.png" />求椭圆的方程  </p><p>答 案:由题意,设椭圆方程为<img src="https://img2.meite.com/questions/202303/2964239cdfdcc2f.png" /> 由<img src="https://img2.meite.com/questions/202303/2964239cef23e00.png" /><img src="https://img2.meite.com/questions/202303/2964239cf5cc660.png" /> 设P<img src="https://img2.meite.com/questions/202303/2964239d01ba1aa.png" />点到椭圆上任一点的距离为 d, <img src="https://img2.meite.com/questions/202303/2964239d0dd8af6.png" /> <img src="https://img2.meite.com/questions/202303/2964239d1e44fb3.png" />则在y=-b时,<img src="https://img2.meite.com/questions/202303/2964239d2c1a969.png" />最大,即d也最大。 <img src="https://img2.meite.com/questions/202303/2964239d43183b3.png" /><img src="https://img2.meite.com/questions/202303/2964239d48e58c6.png" /> <img src="https://img2.meite.com/questions/202303/2964239d5187168.png" />  </p><p>2、已知等差数列{an}中,a1+a3+a5=6,a2+a4+a6=12,求{an}的首项与公差.  </p><p>答 案:因为{an}为等差数列,则<img src="https://img2.meite.com/questions/202404/20662381512a2b1.png" /><img src="https://img2.meite.com/questions/202404/2066238155841ce.png" /></p><p>3、已知等差数列<img src="https://img2.meite.com/questions/202303/296423eaf9717d6.png" />前n项和<img src="https://img2.meite.com/questions/202303/296423eb032d219.png" /> (Ⅰ)求通项<img src="https://img2.meite.com/questions/202303/296423eb1a4ebf5.png" />的表达式 (Ⅱ)求<img src="https://img2.meite.com/questions/202303/296423eb26c2214.png" />的值  </p><p>答 案:(Ⅰ)当n=1时,由<img src="https://img2.meite.com/questions/202303/296423eb432a645.png" />得<img src="https://img2.meite.com/questions/202303/296423eb5068b03.png" /> <img src="https://img2.meite.com/questions/202303/296423eb59a45cd.png" /> <img src="https://img2.meite.com/questions/202303/296423eb6100c03.png" /> 也满足上式,故<img src="https://img2.meite.com/questions/202303/296423eb755b7df.png" />=1-4n(n≥1) (Ⅱ)由于数列<img src="https://img2.meite.com/questions/202303/296423eb93e2df0.png" />是首项为<img src="https://img2.meite.com/questions/202303/296423eba5a3367.png" />公差为d=-4的等差数列,所以<img src="https://img2.meite.com/questions/202303/296423ebc29c045.png" />是首项为<img src="https://img2.meite.com/questions/202303/296423ebe5ba947.png" />公差为d=-8,项数为13的等差数列,于是由等差数列前n项和公式得: <img src="https://img2.meite.com/questions/202303/296423ec1ac9811.png" /><img src="https://img2.meite.com/questions/202303/296423ec20a013e.png" />  </p><p>4、已知抛物线C:y2=2px(p>0)的焦点到准线的距离为1。(I)求C的方程;<br />(Ⅱ)若A(1,m)(m>0)为C上一点,O为坐标原点,求C上另一点B的坐标,使得OA⊥OB。</p><p>答 案:(I)由题意,该抛物线的焦点到准线的距离为<img src="https://img2.meite.com/questions/202404/20662381634105d.png" /> 所以抛物线C的方程为y<sup>2</sup>=2x. (Ⅱ)因A(l,m)(m>0)为C上一点,故有m<sup>2</sup>=2, 可得 m=<img src="https://img2.meite.com/questions/202404/206623816da9881.png" />因此A点坐标为<img src="https://img2.meite.com/questions/202404/20662381732cfb3.png" /> 设B点坐标为<img src="https://img2.meite.com/questions/202404/2066238179d51e4.png" /><img src="https://img2.meite.com/questions/202404/20662381806c6f7.png" /><img src="https://img2.meite.com/questions/202404/2066238187c9047.png" /></p><p class="introTit">填空题</p><p>1、函数<img src="https://img2.meite.com/questions/202303/296423b01fb70b9.png" />的图像与坐轴的交点共有()个  </p><p>答 案:2</p><p>解 析:当x=0,<img src="https://img2.meite.com/questions/202303/296423b06fa2850.png" />故函数与y轴交于(0,-1)点;令y=0,则有<img src="https://img2.meite.com/questions/202303/296423b0803e06f.png" />故函数与工轴交于(1,0)点,因此函数<img src="https://img2.meite.com/questions/202303/296423b08e0e38c.png" />与坐标轴的交点共有2个</p><p>2、设<img src="https://img2.meite.com/questions/202303/2964239c3b4ac2f.png" />则<img src="https://img2.meite.com/questions/202303/2964239c42d80d7.png" /></p><p>答 案:-1</p><p>解 析:<img src="https://img2.meite.com/questions/202303/2964239ca8a1cc9.png" /> <img src="https://img2.meite.com/questions/202303/2964239cb367f80.png" /> <img src="https://img2.meite.com/questions/202303/2964239cc4f078f.png" />  </p>
相关题库