2024年成考专升本《高等数学一》每日一练试题07月08日

聚题库
07/08
<p class="introTit">单选题</p><p>1、<img src="https://img2.meite.com/questions/202212/03638af8271f344.png" />=()。</p><ul><li>A:4+3ln2</li><li>B:2+3ln2</li><li>C:4-3ln2</li><li>D:2-3ln2</li></ul><p>答 案:D</p><p>解 析:<img src="https://img2.meite.com/questions/202212/03638af8353f8f9.png" />。</p><p>2、当a<x<b时,f'(x)<0,f''(x)>0.则在区间(a,b)内曲线段y=f(x)的图形()。</p><ul><li>A:沿x轴正向下降且为凹</li><li>B:沿x轴正向下降且为凸</li><li>C:沿x轴正向上升且为凹</li><li>D:沿x轴正向上升且为凸</li></ul><p>答 案:A</p><p>解 析:由于在(a,b)内f'(x)<0,可知f(x)单调减少,由于f''(x)>0,可知曲线y=f(x)在(a,b)内为凹。</p><p>3、设z=x<sup>3y</sup>,则<img src="https://img2.meite.com/questions/202212/01638841c6daa34.png" />=().</p><ul><li>A:<img src='https://img2.meite.com/questions/202212/01638841d11f555.png' /></li><li>B:<img src='https://img2.meite.com/questions/202212/01638841db06fde.png' /></li><li>C:<img src='https://img2.meite.com/questions/202212/01638841e614a34.png' /></li><li>D:<img src='https://img2.meite.com/questions/202212/01638841f115e39.png' /></li></ul><p>答 案:D</p><p>解 析:将x看为常数,因此z为y的指数函数,可知<img src="https://img2.meite.com/questions/202212/01638842059f002.png" />。</p><p class="introTit">主观题</p><p>1、计算<img src="https://img2.meite.com/questions/202212/03638b00b3592fa.png" />。</p><p>答 案:解:<img src="https://img2.meite.com/questions/202212/03638b00c097bc9.png" /></p><p>2、计算<img src="https://img2.meite.com/questions/202211/2963856bdd987de.png" /></p><p>答 案:解:<img src="https://img2.meite.com/questions/202211/2963856bf06efe8.png" />。</p><p>3、求微分方程<img src="https://img2.meite.com/questions/202212/03638ac41f0fd3e.png" />的通解。</p><p>答 案:解:<img src="https://img2.meite.com/questions/202212/03638ac42ad5381.png" />的特征值方程为<img src="https://img2.meite.com/questions/202212/03638ac43c4b5ff.png" />,则<img src="https://img2.meite.com/questions/202212/03638ac449853b1.png" />;故齐次微分方程的通解为<img src="https://img2.meite.com/questions/202212/03638ac45952791.png" />。由题意设原微分方程的特解为<img src="https://img2.meite.com/questions/202212/03638ac46ccee9d.png" />,则有<img src="https://img2.meite.com/questions/202212/03638ac47aa72ad.png" />,得<img src="https://img2.meite.com/questions/202212/03638ac4860b1ed.png" />。即微分方程的通解为<img src="https://img2.meite.com/questions/202212/03638ac4946b4d5.png" />。</p><p class="introTit">填空题</p><p>1、<img src="https://img2.meite.com/questions/202211/30638721dc0b38c.png" />()。</p><p>答 案:<img src="https://img2.meite.com/questions/202211/30638721e77f5eb.png" /></p><p>解 析:<img src="https://img2.meite.com/questions/202211/30638721f6571b1.png" /></p><p>2、设z=xtan(y<sup>2</sup>+1),则<img src="https://img2.meite.com/questions/202303/0364019f6e2d4c5.png" />()</p><p>答 案:<img src="https://img2.meite.com/questions/202303/036401add914eda.png" /></p><p>解 析:对x求偏导,可将<img src="https://img2.meite.com/questions/202303/036401adf5816bd.png" />看作是常数,故<img src="https://img2.meite.com/questions/202303/036401ae06e904f.png" /></p><p>3、若f(x)是连续函数的偶函数,且<img src="https://img2.meite.com/questions/202211/30638724d13abf9.png" />,则<img src="https://img2.meite.com/questions/202211/30638724e9129ba.png" />=()。</p><p>答 案:2m</p><p>解 析:由于f(x)为连续的偶函数,因此<img src="https://img2.meite.com/questions/202211/306387250ca2cf0.png" />。</p><p class="introTit">简答题</p><p>1、设函数z(x,y)由方程<img src="https://img2.meite.com/questions/202303/176414074ee99be.png" />所确定 证明:<img src="https://img2.meite.com/questions/202303/176414075c587da.png" /></p><p>答 案:<img src="https://img2.meite.com/questions/202303/176414076fa1487.png" /> <img src="https://img2.meite.com/questions/202303/176414077960454.png" />所以<img src="https://img2.meite.com/questions/202303/176414077fe7935.png" /><img src="https://img2.meite.com/questions/202303/17641407920ce9d.png" />  </p>
相关题库