2024年成考专升本《高等数学一》每日一练试题07月07日
<p class="introTit">单选题</p><p>1、<img src="https://img2.meite.com/questions/202303/0364019be331df8.png" /></p><ul><li>A:sin2x</li><li>B:sin<sup>2</sup>x</li><li>C:cos<sup>2</sup>x</li><li>D:-sin2x</li></ul><p>答 案:B</p><p>解 析:由变上限定积分的定理可知<img src="https://img2.meite.com/questions/202303/036401abac1d9ea.png" /></p><p>2、微分方程<img src="https://img2.meite.com/questions/202212/01638868718738f.png" />的通解为()。</p><ul><li>A:y=Ce<sup>-x</sup></li><li>B:y=e<sup>-x</sup>+C</li><li>C:y=C<sub>1</sub>e<sup>-x</sup>+C2</li><li>D:y=e<sup>-x</sup></li></ul><p>答 案:C</p><p>解 析:特征方程为r<sup>2</sup>+r=0,特征根为r<sub>1</sub>=0,r<sub>2</sub>=-1;方程的通解为y=C<sub>1</sub>e<sup>-x</sup>+C2。</p><p>3、若y=a<sup>x</sup>(a>0且a≠1),则<img src="https://img2.meite.com/questions/202211/296385bed009377.png" />等于()。</p><ul><li>A:ln<sup>n</sup>a</li><li>B:a<sup>x</sup>ln<sup>n</sup>a</li><li>C:<img src='https://img2.meite.com/questions/202211/296385bef0bc6ad.png' /></li><li>D:<img src='https://img2.meite.com/questions/202211/296385befa7445a.png' /></li></ul><p>答 案:A</p><p>解 析:因为<img src="https://img2.meite.com/questions/202211/296385bf0d7ab44.png" />,故<img src="https://img2.meite.com/questions/202211/296385bf1e28d19.png" />。</p><p class="introTit">主观题</p><p>1、设z=f(x,y)是由方程<img src="https://img2.meite.com/questions/202212/016388512702c56.png" />所确定,求<img src="https://img2.meite.com/questions/202212/0163885132b6538.png" />。</p><p>答 案:解:由<img src="https://img2.meite.com/questions/202212/0163885140e7d04.png" />得全微分方程:<img src="https://img2.meite.com/questions/202212/0163885152cf27a.png" />化简得<img src="https://img2.meite.com/questions/202212/016388516e89256.png" /><img src="https://img2.meite.com/questions/202212/016388517cdc468.png" />所以<img src="https://img2.meite.com/questions/202212/01638851ab158db.png" /><img src="https://img2.meite.com/questions/202212/01638851ba75287.png" />。</p><p>2、求<img src="https://img2.meite.com/questions/202211/166374ad60c8c33.png" /></p><p>答 案:解:<img src="https://img2.meite.com/questions/202211/166374ad7a47718.png" /></p><p>3、计算二重积分<img src="https://img2.meite.com/questions/202212/03638af10c1bd16.png" />,其中D是x<sup>2</sup>+y<sup>2</sup>≤1,x≥0,y≥0所围的平面区域.</p><p>答 案:解:D的图形见下图中阴影部分。<img src="https://img2.meite.com/questions/202212/03638af134a3609.png" />在极坐标系下D满足0≤<img src="https://img2.meite.com/questions/202212/03638af14d96d51.png" />≤<img src="https://img2.meite.com/questions/202212/03638af15506ed3.png" />,0≤r≤1,且x<sup>2</sup>+y<sup>2</sup>=(rcos<img src="https://img2.meite.com/questions/202212/03638af14d96d51.png" />)<sup>2</sup>+(rsin<img src="https://img2.meite.com/questions/202212/03638af14d96d51.png" />)<sup>2</sup>=r<sup>2</sup>,故<img src="https://img2.meite.com/questions/202212/03638af19233229.png" />。</p><p class="introTit">填空题</p><p>1、微分方程y''=x的通解是()。</p><p>答 案:<img src="https://img2.meite.com/questions/202212/0163886f82df537.png" /></p><p>解 析:等式两边同时积分得<img src="https://img2.meite.com/questions/202212/0163886f95c7a8f.png" />,重复上一步骤得<img src="https://img2.meite.com/questions/202212/0163886fa4e4f0b.png" /></p><p>2、级数<img src="https://img2.meite.com/questions/202212/0163885ee7af878.png" />()收敛。</p><p>答 案:绝对</p><p>解 析:因为<img src="https://img2.meite.com/questions/202212/0163885efa56e92.png" />,又级数<img src="https://img2.meite.com/questions/202212/0163885f06c8211.png" />收敛,所以<img src="https://img2.meite.com/questions/202212/0163885f187bb6c.png" />绝对收敛。</p><p>3、<img src="https://img2.meite.com/questions/202211/16637457ce1b54a.png" />=()。</p><p>答 案:sin(x+2)+C</p><p>解 析:<img src="https://img2.meite.com/questions/202211/16637457edf1411.png" /></p><p class="introTit">简答题</p><p>1、计算<img src="https://img2.meite.com/questions/202405/166645c48ae9784.png" />
</p><p>答 案:<img src="https://img2.meite.com/questions/202405/166645c49761600.png" /></p>