2024年成考专升本《高等数学一》每日一练试题07月06日

聚题库
07/06
<p class="introTit">单选题</p><p>1、<img src="https://img2.meite.com/questions/202211/16637453b2a966c.png" />=()。</p><ul><li>A:<img src='https://img2.meite.com/questions/202211/16637453b864f37.png' /></li><li>B:<img src='https://img2.meite.com/questions/202211/16637453bce41b0.png' /></li><li>C:<img src='https://img2.meite.com/questions/202211/16637453c14c4df.png' /></li><li>D:<img src='https://img2.meite.com/questions/202211/16637453c621372.png' /></li></ul><p>答 案:D</p><p>解 析:<img src="https://img2.meite.com/questions/202211/16637453cd1b78b.png" />。</p><p>2、对于微分方程<img src="https://img2.meite.com/questions/202212/0163886b75a6de5.png" />,利用待定系数法求其特解y*时,下列特解设法正确的是()。</p><ul><li>A:y*=(Ax+B)e<sup>x</sup></li><li>B:y*=x(Ax+B)e<sup>x</sup></li><li>C:y*=Ax<sup>3</sup>e<sup>x</sup></li><li>D:y*=x<sup>2</sup>(Ax+B)e<sup>x</sup></li></ul><p>答 案:D</p><p>解 析:特征方程为r<sup>2</sup>-2r+1=0,特征根为r=1(二重根),<img src="https://img2.meite.com/questions/202212/0163886bbd8c2a4.png" />,a=1为特征根,原方程特解为<img src="https://img2.meite.com/questions/202212/0163886bda4453b.png" />。</p><p>3、设<img src="https://img2.meite.com/questions/202211/176375affc9e8fd.png" />,则<img src="https://img2.meite.com/questions/202211/176375b0105d066.png" />()。</p><ul><li>A:2xy+y<sup>2</sup>8.x<sup>2</sup>+2xy<br /></li><li>C:4xy</li><li>D:x<sup>2</sup>+y<sup>2</sup></li></ul><p>答 案:A</p><p>解 析:对二元函数z,求<img src="https://img2.meite.com/questions/202211/176375b03781605.png" />时,将y看作常量,则<img src="https://img2.meite.com/questions/202211/176375b047cade5.png" />。</p><p class="introTit">主观题</p><p>1、设e<sup>x</sup>+x=e<sup>y</sup>+y,求<img src="https://img2.meite.com/questions/202211/306387080d77da3.png" />。</p><p>答 案:解:对等式两边同时微分,得<img src="https://img2.meite.com/questions/202211/306387081b5699a.png" />,故<img src="https://img2.meite.com/questions/202211/306387082eaafac.png" />。</p><p>2、求<img src="https://img2.meite.com/questions/202211/2963856a253cd47.png" />。</p><p>答 案:解:<img src="https://img2.meite.com/questions/202211/2963856a3714729.png" /></p><p>3、求y=<img src="https://img2.meite.com/questions/202211/306387018466ce4.png" />的一阶导数y'。</p><p>答 案:解:两边取对数得<img src="https://img2.meite.com/questions/202211/306387019d12b78.png" /><img src="https://img2.meite.com/questions/202211/30638701ab3b7a1.png" />两边对x求导得<img src="https://img2.meite.com/questions/202211/30638701d789e30.png" />故<img src="https://img2.meite.com/questions/202211/306387020ad880a.png" /></p><p class="introTit">填空题</p><p>1、设<img src="https://img2.meite.com/questions/202211/16637457a4652c2.png" />,则y'=()。</p><p>答 案:<img src="https://img2.meite.com/questions/202211/16637457ab0d441.png" /></p><p>解 析:<img src="https://img2.meite.com/questions/202211/16637457b1b8bf2.png" /><img src="https://img2.meite.com/questions/202211/16637457b74848e.png" /></p><p>2、极限<img src="https://img2.meite.com/questions/202211/29638565e60a121.png" />=()。</p><p>答 案:2</p><p>解 析:<img src="https://img2.meite.com/questions/202211/2963856610bfe18.png" />。</p><p>3、函数<img src="https://img2.meite.com/questions/202211/176375a282d1b8b.png" />的单调减少区间为()。</p><p>答 案:(-1,1)</p><p>解 析:<img src="https://img2.meite.com/questions/202211/176375a2940aabf.png" />,则y'=x<sup>2</sup>-1.令y'=0,得x<sub>1</sub>=1,x<sub>2</sub>=1.当x<1时,>0,函数单调递增;当-1<x<1时,y'<0,函数y单调递减;当x>1时,y'>0,函数单调递增.故单调减少区间为(-1,1)。</p><p class="introTit">简答题</p><p>1、函数y=y(x)由方程<img src="https://img2.meite.com/questions/202303/17641407dc7401a.png" />确定,求dy</p><p>答 案:<img src="https://img2.meite.com/questions/202303/176414080f37d43.png" /></p>
相关题库