2024年成考专升本《高等数学一》每日一练试题07月04日

聚题库
07/04
<p class="introTit">单选题</p><p>1、设函数f(x)在(0,1)上可导且在[0,1]上连续,且f'(x)>0,f(0)<0,f(1)>0,则f(x)在(0,1)内()。</p><ul><li>A:至少有一个零点</li><li>B:有且仅有一个零点</li><li>C:没有零点</li><li>D:零点的个数不能确定</li></ul><p>答 案:B</p><p>解 析:因为函数f(x)在[0,1]上连续,f(0)<0,f(1)>0,故存在<img src="https://img2.meite.com/questions/202211/296385d38e97322.png" />,使得<img src="https://img2.meite.com/questions/202211/296385d39c61158.png" />,又f'(x)>0,函数在(0,1)上单调增加,故f(x)在(0,1)内有且仅有一个零点。</p><p>2、设y=5<sup>x</sup>,则y'=()。</p><ul><li>A:5<sup>x-1</sup></li><li>B:5<sup>x</sup></li><li>C:5<sup>x</sup>ln5</li><li>D:5<sup>x+1</sup></li></ul><p>答 案:C</p><p>解 析:由导数的基本公式可知<img src="https://img2.meite.com/questions/202211/176375af92d4d01.png" />。</p><p>3、微分方程<img src="https://img2.meite.com/questions/202211/17637600fbe28cd.png" />的通解为()。</p><ul><li>A:<img src='https://img2.meite.com/questions/202211/176376010788b46.png' /></li><li>B:<img src='https://img2.meite.com/questions/202211/1763760112a06bb.png' /></li><li>C:<img src='https://img2.meite.com/questions/202211/176376011f85bd6.png' /></li><li>D:<img src='https://img2.meite.com/questions/202211/176376012aefd40.png' /></li></ul><p>答 案:C</p><p>解 析:所给方程为可分离变量方程,分离变量得<img src="https://img2.meite.com/questions/202211/176376013a3005e.png" />,等式两边分别积分得,<img src="https://img2.meite.com/questions/202211/176376014b92d0e.png" />,即<img src="https://img2.meite.com/questions/202211/1763760168d62cd.png" />。</p><p class="introTit">主观题</p><p>1、设<img src="https://img2.meite.com/questions/202211/186376eced1a5f9.png" />求dz。</p><p>答 案:解:<img src="https://img2.meite.com/questions/202211/186376ed05f22a7.png" /><img src="https://img2.meite.com/questions/202211/186376ed16f1c28.png" /></p><p>2、设<img src="https://img2.meite.com/questions/202211/2963856c2de4338.png" />求C的值。</p><p>答 案:解:<img src="https://img2.meite.com/questions/202211/2963856c7163364.png" />则<img src="https://img2.meite.com/questions/202211/2963856cb44e6d7.png" />,有<img src="https://img2.meite.com/questions/202211/2963856cc277361.png" />,<img src="https://img2.meite.com/questions/202211/2963856cd1025c5.png" />。</p><p>3、求函数<img src="https://img2.meite.com/questions/202211/16637481ac9faa4.png" />的极大值与极小值。</p><p>答 案:解:<img src="https://img2.meite.com/questions/202211/16637481b49cbf3.png" />令f′(x)=0,解得x<sub>1</sub>=-1;x<sub>2</sub>=1又f″(x)=6x,可知f″(-1)=-6<0,f″(1)=6>0<br />故x=-1为f(x)的极大值点,极大值为7<br />x=1为f(x)的极小值点,极小值为3。</p><p class="introTit">填空题</p><p>1、极限<img src="https://img2.meite.com/questions/202211/296385677c81efc.png" />=()。</p><p>答 案:<img src="https://img2.meite.com/questions/202211/296385678b5037c.png" /></p><p>解 析:因为<img src="https://img2.meite.com/questions/202211/296385679907948.png" />,且分子分母n的最高次方相等,故该极限的值取决于分子分母最高次方的系数比,所以答案为<img src="https://img2.meite.com/questions/202211/29638567b10bdb9.png" />。</p><p>2、设函数z=f(x,y)可微,(x<sub>0</sub>,y<sub>0</sub>)为其极值点,则<img src="https://img2.meite.com/questions/202211/176375a3a0e8b5c.png" />()。</p><p>答 案:</p><p>解 析:由于z=f(x,y)可微,则偏导数必定存在,再由二元函数极值的必要条件可知,若点(x<sub>0</sub>,y<sub>0</sub>)为z=f(x,y)的极值点,且<img src="https://img2.meite.com/questions/202211/176375a3d3cfd7f.png" />,<img src="https://img2.meite.com/questions/202211/176375a3e9da99a.png" />在点(x<sub>0</sub>,y<sub>0</sub>)处存在,则必有<img src="https://img2.meite.com/questions/202211/176375a408b43ee.png" /></p><p>3、<img src="https://img2.meite.com/questions/202303/1764141bea38c4f.png" />()</p><p>答 案:<img src="https://img2.meite.com/questions/202303/1764141c03d308e.png" /></p><p>解 析:<img src="https://img2.meite.com/questions/202303/1764141c185c3e5.png" /><img src="https://img2.meite.com/questions/202303/1764141c1fe101b.png" /></p><p class="introTit">简答题</p><p>1、若函数<img src="https://img2.meite.com/questions/202303/1764141c98f2b2a.png" />在x=0处连续。求a。</p><p>答 案:由<img src="https://img2.meite.com/questions/202303/1764141cd6dcca7.png" /> 又因f(0)=a,所以当a=-1时,f(x)在x=0连续。  </p>
相关题库