2024年成考专升本《高等数学一》每日一练试题07月03日

聚题库
07/03
<p class="introTit">单选题</p><p>1、设<img src="https://img2.meite.com/questions/202211/176375ffb347729.png" />()。</p><ul><li>A:2x+1</li><li>B:2xy+1</li><li>C:<img src='https://img2.meite.com/questions/202211/176375ffc1a95e7.png' /></li><li>D:2xy</li></ul><p>答 案:B</p><p>解 析:<img src="https://img2.meite.com/questions/202211/176375ffd21b049.png" />只需将y看作常量,因此<img src="https://img2.meite.com/questions/202211/176375ffe6a0591.png" />。</p><p>2、设<img src="https://img2.meite.com/questions/202211/28638483d308536.png" />,则当x→0时()。</p><ul><li>A:f(x)是比g(x)高阶的无穷小</li><li>B:f(x)是比g(x)低阶的无穷小</li><li>C:f(x)与g(x)是同阶的无穷小,但不是等价无穷小</li><li>D:f(x)与g(x)是等价无穷小</li></ul><p>答 案:C</p><p>解 析:<img src="https://img2.meite.com/questions/202211/28638483e402cfb.png" /></p><p>3、<img title="中学教师招聘,押题密卷,2021年教师招聘考试《中学数学》考前押题5" src="https://img2.meite.com/question/2022-03/622a48a469613.png" alt="中学教师招聘,押题密卷,2021年教师招聘考试《中学数学》考前押题5" /></p><ul><li>A:0</li><li>B:1</li><li>C:2</li><li>D:∞</li></ul><p>答 案:A</p><p>解 析:<img title="中学教师招聘,押题密卷,2021年教师招聘考试《中学数学》考前押题5" src="https://img2.meite.com/question/2022-03/622a872a964b0.png" alt="中学教师招聘,押题密卷,2021年教师招聘考试《中学数学》考前押题5" /></p><p class="introTit">主观题</p><p>1、<img src="https://img2.meite.com/question/import/38122ef5ca6e8921ffc7a5a4cc1b3783.png" /></p><p>答 案:<img src="https://img2.meite.com/question/import/5dba69a2724d60821a1a3610ad6ceb11.png" /></p><p>2、求<img src="https://img2.meite.com/questions/202212/0163880fa464dfd.png" />。</p><p>答 案:解:<img src="https://img2.meite.com/questions/202212/0163880fb607a4d.png" /><img src="https://img2.meite.com/questions/202212/0163880fc85a8bd.png" />。</p><p>3、求曲线y=sinx、y=cosx、直线x=0在第一象限所围图形的面积A及该图形绕x轴旋转一周所得旋转体的体积V<sub>x</sub>。</p><p>答 案:解:由<img src="https://img2.meite.com/questions/202212/01638816eb363c4.png" />,解得两曲线交点的x坐标为<img src="https://img2.meite.com/questions/202212/01638816fe2c575.png" />。<img src="https://img2.meite.com/questions/202212/016388176a0f817.png" /><img src="https://img2.meite.com/questions/202212/016388174e5df94.png" /><img src="https://img2.meite.com/questions/202212/0163881729a711e.png" /><img src="https://img2.meite.com/questions/202212/016388173bbef42.png" /></p><p class="introTit">填空题</p><p>1、设z=e<sup>xy</sup>,则dz=()  </p><p>答 案:e<sup>xy</sup>(ydx+xdy)</p><p>解 析:<img src="https://img2.meite.com/questions/202405/166645bdee37852.png" /></p><p>2、幂级数<img src="https://img2.meite.com/questions/202212/0163885e81d16c9.png" />的收敛半径是()。</p><p>答 案:<img src="https://img2.meite.com/questions/202212/0163885e8d29a3a.png" /></p><p>解 析:<img src="https://img2.meite.com/questions/202212/0163885e99c41cd.png" /><img src="https://img2.meite.com/questions/202212/0163885ea7f2ed3.png" />,当<img src="https://img2.meite.com/questions/202212/0163885eb6f2f57.png" />时,级数收敛,故收敛区间为<img src="https://img2.meite.com/questions/202212/0163885ec622071.png" />,收敛半径<img src="https://img2.meite.com/questions/202212/0163885eceec350.png" />。</p><p>3、定积分<img src="https://img2.meite.com/questions/202211/30638723be8da0b.png" />dx=()。</p><p>答 案:</p><p>解 析:因为<img src="https://img2.meite.com/questions/202211/30638723cfd41f5.png" />是奇函数,所以定积分<img src="https://img2.meite.com/questions/202211/30638723ef3e7de.png" />。</p><p class="introTit">简答题</p><p>1、已知函数f(x)连续,且满足<img src="https://img2.meite.com/questions/202405/166645beaa03b83.png" />,求f(x).  </p><p>答 案:由于<img src="https://img2.meite.com/questions/202405/166645beaeab9d4.png" />两边同时求导得<img src="https://img2.meite.com/questions/202405/166645beb77c5fe.png" />所以<img src="https://img2.meite.com/questions/202405/166645bebc9ba6e.png" /></p>
相关题库