当前位置:首页 > 考试
>英语
>精选习题
>2024年成考专升本《高等数学二》每日一练试题07月02日
2024年成考专升本《高等数学二》每日一练试题07月02日
<p class="introTit">判断题</p><p>1、若<img src="https://img2.meite.com/questions/202307/1364af5780970e6.png" />,则<img src="https://img2.meite.com/questions/202307/1364af578624075.png" />。()
</p><p>答 案:错</p><p>解 析:<img src="https://img2.meite.com/questions/202212/06638ef8852e1bd.png" />所以<img src="https://img2.meite.com/questions/202212/06638ef88b66bc1.png" /> </p><p class="introTit">单选题</p><p>1、函数f(x)在[0,2]上连续,且在(0,2)内f'(x)>0,则下列不等式成立的是().</p><ul><li>A:f(0)>f(1)>f(2)</li><li>B:f(0)<f(1)<f(2)</li><li>C:f(0)<f(2)<f(1)</li><li>D:f(0)>f(2)>f(1)</li></ul><p>答 案:B</p><p>解 析:由题意知函数f(x)在(0,2)内单调递增,故f(0)<f(1)<f(2).</p><p>2、已知<img src="https://img2.meite.com/questions/202212/06638f0628e1f57.png" />,若函数<img src="https://img2.meite.com/questions/202212/06638f0636d5bb9.png" />,则y'(1)等于().</p><ul><li>A:-2</li><li>B:-1</li><li>C:1</li><li>D:2</li></ul><p>答 案:B</p><p>解 析:根据函数积的求导法则<img src="https://img2.meite.com/questions/202212/06638f06535dc45.png" />,有<img src="https://img2.meite.com/questions/202212/06638f066023188.png" />,所以<img src="https://img2.meite.com/questions/202212/06638f06704c777.png" /></p><p class="introTit">主观题</p><p>1、设曲线y=cosx(0≤x≤π/2)与x轴、y轴所围成的图形面积被曲线y=asinx,y=bsinx(a>b>0)三等分,试确定a、b的值.</p><p>答 案:解:由y=cosx,y=asinx,得tanx=1/a,故有<img src="https://img2.meite.com/questions/202212/0763903dd7708ee.png" />;同理可求得<img src="https://img2.meite.com/questions/202212/0763903de543168.png" />.因为<img src="https://img2.meite.com/questions/202212/0763903df757200.png" />,令这三部分的面积分别为D<sub>1</sub>,D<sub>2</sub>,D<sub>3</sub>,有D<sub>1</sub>=D<sub>2</sub>=D<sub>3</sub>=1/3.<img src="https://img2.meite.com/questions/202212/0763903ef72ee62.png" /><img src="https://img2.meite.com/questions/202212/0763903f0251577.png" />,故a=4/3.<img src="https://img2.meite.com/questions/202212/0763903f376968a.png" /><img src="https://img2.meite.com/questions/202212/0763903f483ee71.png" />故b=5/12.</p><p>2、设函数y=ln(x<sup>2</sup>+1),求dy.</p><p>答 案:解:<img src="https://img2.meite.com/questions/202212/05638d588803777.png" /></p><p class="introTit">填空题</p><p>1、若点(1,3)是曲线y=ax<sup>3+</sup>bx<sup>3</sup>拐点,则a,b分别为().
</p><p>答 案:<img src="https://img2.meite.com/questions/202212/06638eb1fff2f26.png" /></p><p>解 析:因点(1,3)在曲线<img src="https://img2.meite.com/questions/202212/06638eb20e8be00.png" />上,所以a+b=3.又因<img src="https://img2.meite.com/questions/202212/06638eb2255e768.png" />所以6a+2b=0.解方程组<img src="https://img2.meite.com/questions/202212/06638eb23e08312.png" /></p><p>2、曲线y=x<sup>5</sup>-10x<sup>2</sup>+8的拐点坐标(x<sub>0</sub>,y<sub>0</sub>)=().</p><p>答 案:(1,-1)</p><p>解 析:<img src="https://img2.meite.com/questions/202212/05638db4f2d9d27.png" />,令y''=0,得x=1,y=-1.当x<1时,y''<0;当x>1时,y''>0.故(1,-1)为曲线的拐点.</p><p class="introTit">简答题</p><p>1、计算<img src="https://img2.meite.com/questions/202303/2164195445920ef.png" /></p><p>答 案:<img src="https://img2.meite.com/questions/202303/2164195452ae30e.png" /></p><p>2、计算<img src="https://img2.meite.com/questions/202212/07639001b8236a7.png" />
</p><p>答 案:设x=sint,dx=costdt, 所以<img src="https://img2.meite.com/questions/202212/07639001d9da710.png" />
</p>