2024年成考专升本《高等数学一》每日一练试题06月27日

聚题库
06/27
<p class="introTit">单选题</p><p>1、曲线<img src="https://img2.meite.com/questions/202303/176413e20ef1385.png" />与其过原点的切线及y轴所围面积为()</p><ul><li>A:<img src='https://img2.meite.com/questions/202303/176413e22131363.png' /></li><li>B:<img src='https://img2.meite.com/questions/202303/176413e228b6826.png' /></li><li>C:<img src='https://img2.meite.com/questions/202303/176413e22d7bf72.png' /></li><li>D:<img src='https://img2.meite.com/questions/202303/176413e233b0b84.png' /></li></ul><p>答 案:A</p><p>解 析:设<img src="https://img2.meite.com/questions/202303/176413e24ca4a55.png" />为切点,则切线方程为<img src="https://img2.meite.com/questions/202303/176413e25bd7507.png" />联立<img src="https://img2.meite.com/questions/202303/176413e26a09694.png" />得<img src="https://img2.meite.com/questions/202303/176413e279016e2.png" />所以切线方程为y=ex,故所求面积为<img src="https://img2.meite.com/questions/202303/176413e29f7d093.png" /></p><p>2、微分方程y'+y=0的通解为y=()。</p><ul><li>A:e<sup>-x</sup>+C</li><li>B:-e<sup>-x</sup>+C</li><li>C:Ce<sup>-x</sup></li><li>D:Ce<sup>x</sup></li></ul><p>答 案:C</p><p>解 析:所给方程为可分离变量方程,分离变量得<img src="https://img2.meite.com/questions/202212/01638868fa3de9e.png" />。两端分别积分<img src="https://img2.meite.com/questions/202212/01638869176a115.png" />。</p><p>3、下列极限正确的是()。</p><ul><li>A:<img src='https://img2.meite.com/questions/202211/2863847c11dc301.png' /></li><li>B:<img src='https://img2.meite.com/questions/202211/2863847c1dd9881.png' /></li><li>C:<img src='https://img2.meite.com/questions/202211/2863847c2a6539c.png' /></li><li>D:<img src='https://img2.meite.com/questions/202211/2863847c388a5c3.png' /></li></ul><p>答 案:C</p><p>解 析:A项,<img src="https://img2.meite.com/questions/202211/2863847c4584e8a.png" />;B项,<img src="https://img2.meite.com/questions/202211/2863847c534a6cd.png" />;C项,<img src="https://img2.meite.com/questions/202211/2863847c617294c.png" />;D项,<img src="https://img2.meite.com/questions/202211/2863847c73cc617.png" />。</p><p class="introTit">主观题</p><p>1、求二元函数<img src="https://img2.meite.com/questions/202212/01638851cc53e6f.png" />的极值。</p><p>答 案:解:<img src="https://img2.meite.com/questions/202212/01638851e4935b5.png" />则由<img src="https://img2.meite.com/questions/202212/01638851f7adb87.png" /><img src="https://img2.meite.com/questions/202212/01638852088c159.png" />点P(-1,1)为唯一驻点,<img src="https://img2.meite.com/questions/202212/016388528d5cc07.png" />因此点(-1,-1)为z的极小值点,极小值为-1。</p><p>2、求<img src="https://img2.meite.com/questions/202211/176375a84a8cfed.png" /></p><p>答 案:解:方法一:(洛必达法则)<img src="https://img2.meite.com/questions/202211/176375a85dc2360.png" />方法二:(等价无穷小)<img src="https://img2.meite.com/questions/202211/176375a870ab12a.png" /><img src="https://img2.meite.com/questions/202211/176375a87faccf4.png" /></p><p>3、求<img src="https://img2.meite.com/questions/202211/166374aae6ed5e7.png" /></p><p>答 案:解:利用洛必达法则,得<img src="https://img2.meite.com/questions/202211/166374aaf5e35bf.png" /></p><p class="introTit">填空题</p><p>1、微分方程<img src="https://img2.meite.com/questions/202212/0163886d640ee82.png" />的通解是()。</p><p>答 案:y=e<sup>x</sup>+C</p><p>解 析:<img src="https://img2.meite.com/questions/202212/0163886d722bb43.png" />,分离变量,得dy=e<sup>x</sup>dx,两边积分得y=e<sup>x</sup>+C,即为通解。</p><p>2、<img src="https://img2.meite.com/questions/202303/0364019e80baec2.png" /></p><p>答 案:3</p><p>解 析:<img src="https://img2.meite.com/questions/202303/036401ac9c0e613.png" /></p><p>3、曲线y=x<sup>3</sup>+2x+3的拐点坐标是()。</p><p>答 案:(0,3)</p><p>解 析:y=x<sup>3</sup>+2x+3,y'=3x<sup>2</sup>+2,y''=6x.令y''=0,得x=0.当x=0时,y=3。当x<0时,y''<0;当x>0时,y''>0.因此(0,3)为曲线的拐点。</p><p class="introTit">简答题</p><p>1、求方程<img src="https://img2.meite.com/questions/202303/17641427a20cfc0.png" />的通解。  </p><p>答 案:<img src="https://img2.meite.com/questions/202303/17641427b60f0c0.png" /></p>
相关题库