2024年成考专升本《高等数学一》每日一练试题06月26日

聚题库
06/26
<p class="introTit">单选题</p><p>1、<img src="https://img2.meite.com/questions/202212/03638af57dc3578.png" />()。</p><ul><li>A:<img src='https://img2.meite.com/questions/202212/03638af58d9bad0.png' /></li><li>B:<img src='https://img2.meite.com/questions/202212/03638af597298c7.png' /></li><li>C:<img src='https://img2.meite.com/questions/202212/03638af5a083e48.png' /></li><li>D:<img src='https://img2.meite.com/questions/202212/03638af5a9e9bc2.png' /></li></ul><p>答 案:B</p><p>解 析:根据<img src="https://img2.meite.com/questions/202212/03638af5bbb5a1c.png" />,可得<img src="https://img2.meite.com/questions/202212/03638af5ceddb5f.png" />。</p><p>2、<img src="https://img2.meite.com/question/import/591d0b5c9f65cc151933621f3f7d06ae.png" /></p><ul><li>A:2x<sup>2+C</sup></li><li>B:x<sup>2+C</sup></li><li>C:1/2x<sup>2+C</sup></li><li>D:x+C</li></ul><p>答 案:C</p><p>3、若<img src="https://img2.meite.com/questions/202211/3063871b92b3cb7.png" />,则<img src="https://img2.meite.com/questions/202211/3063871b9e3abc0.png" />=()。</p><ul><li>A:F(e<sup>-x</sup>)+C</li><li>B:F(e<sup>x</sup>)+C</li><li>C:<img src='https://img2.meite.com/questions/202211/3063871cea8fb80.png' />+C</li><li>D:-F(e<sup>-x</sup>)+C</li></ul><p>答 案:D</p><p>解 析:由<img src="https://img2.meite.com/questions/202211/3063871d071a52d.png" />,可得<img src="https://img2.meite.com/questions/202211/3063871d166a7d0.png" />。</p><p class="introTit">主观题</p><p>1、设<img src="https://img2.meite.com/questions/202211/166374afc293c27.png" />,求<img src="https://img2.meite.com/questions/202211/166374afcf46756.png" />。</p><p>答 案:解:<img src="https://img2.meite.com/questions/202211/166374afe188e20.png" /></p><p>2、求微分方程<img src="https://img2.meite.com/questions/202212/03638abfcd7e3d7.png" />的通解。</p><p>答 案:解:<img src="https://img2.meite.com/questions/202212/03638abfdcef73e.png" />的特征方程为<img src="https://img2.meite.com/questions/202212/03638abff01fb1d.png" />,则特征根为<img src="https://img2.meite.com/questions/202212/03638abffe17da5.png" />,故其通解为<img src="https://img2.meite.com/questions/202212/03638ac008bf86f.png" />因为自由项<img src="https://img2.meite.com/questions/202212/03638ac01b1bf1b.png" />不是特征根,故设特殊解为<img src="https://img2.meite.com/questions/202212/03638ac02b593ed.png" />代入原方程,有<img src="https://img2.meite.com/questions/202212/03638ac03e9196e.png" />故<img src="https://img2.meite.com/questions/202212/03638ac04c2d7ae.png" />的通解为<img src="https://img2.meite.com/questions/202212/03638ac05da9731.png" /></p><p>3、将<img src="https://img2.meite.com/questions/202212/01638861372e412.png" />展开为x的幂级数。</p><p>答 案:解:因为<img src="https://img2.meite.com/questions/202212/0163886156cd240.png" />,<img src="https://img2.meite.com/questions/202212/016388616850530.png" />,所以<img src="https://img2.meite.com/questions/202212/016388617f85441.png" /></p><p class="introTit">填空题</p><p>1、<img src="https://img2.meite.com/questions/202212/016388043ccb5a3.png" />=()。</p><p>答 案:</p><p>解 析:被积函数x<sup>3</sup>+sinx为奇函数,且积分区域关于原点对称,由定积分的对称性得<img src="https://img2.meite.com/questions/202212/01638804565adcd.png" />=0。</p><p>2、微分方程dy+xdx=0的通解为()。</p><p>答 案:<img src="https://img2.meite.com/questions/202211/176375d75458c80.png" /></p><p>解 析:所给方程为可分离变量方程,分离变量得,dy=-xdx,等式两边分别积分<img src="https://img2.meite.com/questions/202211/176375d772333c4.png" /></p><p>3、<img src="https://img2.meite.com/questions/202211/176375d4a6846cc.png" />()。</p><p>答 案:e<sup>-3</sup></p><p>解 析:所给极限为重要极限的形式,由<img src="https://img2.meite.com/questions/202211/176375d4be3d81b.png" />,可得<img src="https://img2.meite.com/questions/202211/176375d4ca53ef0.png" /></p><p class="introTit">简答题</p><p>1、设D是由曲线<img src="https://img2.meite.com/questions/202405/166645be83cfdf4.png" />,x=0,y=0所围成的平面图形. (1)求D的面积S; (2)求D绕x轴旋转一周所得旋转体的体积V.  </p><p>答 案:<img src="https://img2.meite.com/questions/202405/166645be8b845c8.png" /></p>
相关题库