2024年成考专升本《高等数学一》每日一练试题06月22日
<p class="introTit">单选题</p><p>1、<img src="https://img2.meite.com/questions/202303/0364019a9408420.png" />
</p><ul><li>A:<img src='https://img2.meite.com/questions/202303/0364019aaa5f6a4.png' /></li><li>B:<img src='https://img2.meite.com/questions/202303/0364019ab08dd7c.png' /></li><li>C:<img src='https://img2.meite.com/questions/202303/0364019ab8072e7.png' /></li><li>D:<img src='https://img2.meite.com/questions/202303/0364019abd90118.png' /></li></ul><p>答 案:C</p><p>解 析:<img src="https://img2.meite.com/questions/202303/036401aab3469b9.png" /></p><p>2、级数<img src="https://img2.meite.com/questions/202212/016388557833724.png" />(a为大于零的常数)()。</p><ul><li>A:绝对收敛</li><li>B:条件收敛</li><li>C:发散</li><li>D:收敛性与a有关</li></ul><p>答 案:A</p><p>解 析:<img src="https://img2.meite.com/questions/202212/01638855b02a9c3.png" /><img src="https://img2.meite.com/questions/202212/01638855c11e7de.png" />级数,因此为收敛级数,由级数性质可知<img src="https://img2.meite.com/questions/202212/01638855d964fc3.png" />绝对收敛。</p><p>3、设z=arcsinx+e<sup>y</sup>,则<img src="https://img2.meite.com/questions/202211/1763759bb3e39be.png" />()。</p><ul><li>A:<img src='https://img2.meite.com/questions/202211/1763759bc062b52.png' /></li><li>B:<img src='https://img2.meite.com/questions/202211/1763759bcfba511.png' /></li><li>C:<img src='https://img2.meite.com/questions/202211/1763759bdfee91f.png' /></li><li>D:e<sup>y</sup></li></ul><p>答 案:D</p><p>解 析:求<img src="https://img2.meite.com/questions/202211/1763759bfac860d.png" />时,将x看作常量,z=arcsinx+e<sup>y</sup>,因此<img src="https://img2.meite.com/questions/202211/1763759c16b93a3.png" />。</p><p class="introTit">主观题</p><p>1、设有一圆形薄片<img src="https://img2.meite.com/questions/202212/016388539282716.png" />,在其上一点M(x,y)的面密度与点M到点(0,0)的距离成正比,求分布在此薄片上的物质的质量。</p><p>答 案:解:设密度为<img src="https://img2.meite.com/questions/202212/01638853a97290f.png" />故质量<img src="https://img2.meite.com/questions/202212/01638853c0a4ea0.png" /><img src="https://img2.meite.com/questions/202212/01638853e14485a.png" /></p><p>2、求y=<img src="https://img2.meite.com/questions/202211/306387018466ce4.png" />的一阶导数y'。</p><p>答 案:解:两边取对数得<img src="https://img2.meite.com/questions/202211/306387019d12b78.png" /><img src="https://img2.meite.com/questions/202211/30638701ab3b7a1.png" />两边对x求导得<img src="https://img2.meite.com/questions/202211/30638701d789e30.png" />故<img src="https://img2.meite.com/questions/202211/306387020ad880a.png" /></p><p>3、设<img src="https://img2.meite.com/questions/202212/03638aff4f737d0.png" />存在且<img src="https://img2.meite.com/questions/202212/03638aff59d37e0.png" />,求<img src="https://img2.meite.com/questions/202212/03638aff6554eac.png" /></p><p>答 案:解:设<img src="https://img2.meite.com/questions/202212/03638aff7078ded.png" />对<img src="https://img2.meite.com/questions/202212/03638aff830ad7a.png" />两边同时求极限,得<img src="https://img2.meite.com/questions/202212/03638affa03127b.png" />,即<img src="https://img2.meite.com/questions/202212/03638affaad78d4.png" />,得<img src="https://img2.meite.com/questions/202212/03638affb8a0ed1.png" />。</p><p class="introTit">填空题</p><p>1、<img src="https://img2.meite.com/questions/202212/016388043ccb5a3.png" />=()。</p><p>答 案:</p><p>解 析:被积函数x<sup>3</sup>+sinx为奇函数,且积分区域关于原点对称,由定积分的对称性得<img src="https://img2.meite.com/questions/202212/01638804565adcd.png" />=0。</p><p>2、如果曲线f(x)=a-<img src="https://img2.meite.com/questions/202211/306386d384a9cfa.png" />有水平渐近线y=1,则a=()。</p><p>答 案:<img src="https://img2.meite.com/questions/202211/306386d392d1d9b.png" /></p><p>解 析:<img src="https://img2.meite.com/questions/202211/306386d3a24b664.png" /></p><p>3、设区域<img src="https://img2.meite.com/questions/202211/186376e349c7d73.png" />则<img src="https://img2.meite.com/questions/202211/186376e9c7736d6.png" />=()。</p><p>答 案:4</p><p>解 析:D:-1≤x≤1,0≤y≤2为边长等于2的正方形,由二重积分性质可知<img src="https://img2.meite.com/questions/202211/186376ea0ebd101.png" /></p><p class="introTit">简答题</p><p>1、计算<img src="https://img2.meite.com/questions/202303/036401a0f450a6c.png" />其中D是由直线y=0.y=x,x=1所围成的闭区域。
</p><p>答 案:<img src="https://img2.meite.com/questions/202303/036401afdc2876b.png" /></p>