2024年成考专升本《高等数学一》每日一练试题06月21日
<p class="introTit">单选题</p><p>1、当x→0时,5x-sin5x是x的()。
</p><ul><li>A:高阶无穷小量</li><li>B:等价无穷小量</li><li>C:同阶无穷小量,但不是等价无穷小量</li><li>D:低阶无穷小量</li></ul><p>答 案:A</p><p>解 析:<img src="https://img2.meite.com/questions/202405/166645bb7c29d47.png" />,故5x-sin5x是x的高阶无穷小量.</p><p>2、在区间[-2,2]上,下列函数中不满足罗尔定理条件的是()。</p><ul><li>A:<img src='https://img2.meite.com/questions/202212/03638af6d42e605.png' /></li><li>B:<img src='https://img2.meite.com/questions/202212/03638af6dce519a.png' /></li><li>C:<img src='https://img2.meite.com/questions/202212/03638af6e58d344.png' /></li><li>D:1n(1+x<sup>2</sup>)</li></ul><p>答 案:B</p><p>解 析:A、C、D选项三个函数都是初等函数,且在[-2,2]上有定义,因此在区间[-2,2]上连续,且在区间两端点处函数值相等,又A选项的导函数为-2cosxsinx,C选项的导函数为<img src="https://img2.meite.com/questions/202212/03638af71d4e929.png" />,D选项的导函数为<img src="https://img2.meite.com/questions/202212/03638af72712c29.png" />,都在(-2,2)内有意义,所以A、C、D选项在(-2,2)内都可导,故它们都满足罗尔定理条件;而B选项,<img src="https://img2.meite.com/questions/202212/03638af74636689.png" />故<img src="https://img2.meite.com/questions/202212/03638af75c474b2.png" /><img src="https://img2.meite.com/questions/202212/03638af76b730f8.png" />则f(x)=<img src="https://img2.meite.com/questions/202212/03638af780bc1c2.png" />在x=0连续,而<img src="https://img2.meite.com/questions/202212/03638af79579a54.png" />,<img src="https://img2.meite.com/questions/202212/03638af7b3eeaec.png" />所以f(x)=<img src="https://img2.meite.com/questions/202212/03638af780bc1c2.png" />在x=0处不可导,故f(x)=<img src="https://img2.meite.com/questions/202212/03638af780bc1c2.png" />在(-2,2)内不可导,从而不满足罗尔定理使用条件。</p><p>3、用待定系数法求方程y''-y=xe<sup>x</sup>的特解时,特解应设为()。</p><ul><li>A:y=Ae<sup>-x</sup>+Be<sup>x</sup></li><li>B:y=(Ax+B)xe<sup>x</sup></li><li>C:y=(Ax+B)e<sup>x</sup></li><li>D:y=(A+B)xe<sup>x</sup></li></ul><p>答 案:B</p><p>解 析:因为该微分方程的特征方程为<img src="https://img2.meite.com/questions/202212/016388695614e7e.png" />,显然该特征方程的根为<img src="https://img2.meite.com/questions/202212/016388696a429b5.png" />,故特解应设为<img src="https://img2.meite.com/questions/202212/0163886981ae172.png" />。</p><p class="introTit">主观题</p><p>1、计算<img src="https://img2.meite.com/questions/202211/176375daf19ee29.png" /></p><p>答 案:解:利用洛必达法则,得<img src="https://img2.meite.com/questions/202211/176375db05a5eb7.png" /></p><p>2、求微分方程<img src="https://img2.meite.com/questions/202211/166374add1c6145.png" />的通解.</p><p>答 案:解:原方程对应的齐次微分方程为<img src="https://img2.meite.com/questions/202211/166374ade8112f4.png" />特征方程为<img src="https://img2.meite.com/questions/202211/166374adf9e847c.png" />特征根为x<sub>1</sub>=-1,x<sub>2</sub>=3,<br />齐次方程的通解为<img src="https://img2.meite.com/questions/202211/166374ae1b2107f.png" /><br />设原方程的特解为<img src="https://img2.meite.com/questions/202211/166374ae3374b9e.png" />=A,代入原方程可得<img src="https://img2.meite.com/questions/202211/166374ae434e613.png" />=-1。<br />所以原方程的通解为<img src="https://img2.meite.com/questions/202211/166374ae5b9e010.png" />(C<sub>1</sub>,C<sub>2</sub>为任意常数)</p><p>3、设f(x)是以T为周期的连续函数,a为任意常数,证明:<img src="https://img2.meite.com/questions/202212/01638810a04c178.png" />。</p><p>答 案:证:因为<img src="https://img2.meite.com/questions/202212/01638810b105867.png" />令x=T+t,做变量替换得<img src="https://img2.meite.com/questions/202212/01638810cade25f.png" />故<img src="https://img2.meite.com/questions/202212/01638810de0e205.png" /></p><p class="introTit">填空题</p><p>1、过点M<sub>0</sub>(1,-2,0)且与直线<img src="https://img2.meite.com/questions/202212/0163881f355e9f9.png" />垂直的平面方程为()。</p><p>答 案:3(x-1)-(y+2)+x=0(或3x-y+z=5)</p><p>解 析:因为直线的方向向量s=(3,-1,1),且平面与直线垂直,所以平面的法向量<img src="https://img2.meite.com/questions/202212/0163881f580333e.png" />,由点法式方程有平面方程为:3(x-1)-(y+2)+(z-0)=0,即3(x-1)-(y+2)+z=0。</p><p>2、微分方程<img src="https://img2.meite.com/questions/202212/03638afdfd74497.png" />的通解为()。</p><p>答 案:<img src="https://img2.meite.com/questions/202212/03638afe0806252.png" /></p><p>解 析:方程可化为:<img src="https://img2.meite.com/questions/202212/03638afe13e8de6.png" />,是变量可分离的方程,对两边积分即可得通解。<img src="https://img2.meite.com/questions/202212/03638afe277c407.png" />。</p><p>3、微分方程<img src="https://img2.meite.com/questions/202212/0163886e468bd4b.png" />的通解是()。</p><p>答 案:y=<img src="https://img2.meite.com/questions/202212/0163886e528ad3e.png" /></p><p>解 析:该方程是一阶线性方程,其中<img src="https://img2.meite.com/questions/202212/0163886e62849ed.png" />由通解公式,有<img src="https://img2.meite.com/questions/202212/0163886e7515c8d.png" />因为<img src="https://img2.meite.com/questions/202212/0163886e90e9394.png" />所以<img src="https://img2.meite.com/questions/202212/0163886ea78b114.png" /></p><p class="introTit">简答题</p><p>1、求微分方程<img src="https://img2.meite.com/questions/202405/166645c32071750.png" />的通解. </p><p>答 案:令y’=p,则y”=p’<img src="https://img2.meite.com/question/2024-05/6645c3369f45e.png" />原方程可化为<img src="https://img2.meite.com/question/2024-05/6645c336c9cb8.png" />分离变量得<img src="https://img2.meite.com/question/2024-05/6645c33707397.png" />两边积分得<img src="https://img2.meite.com/question/2024-05/6645c33747738.png" /><br />则<img src="https://img2.meite.com/question/2024-05/6645c337672e7.png" />即<img src="https://img2.meite.com/question/2024-05/6645c3379a8c3.png" /><br />再次分离变量并积分得y=<img src="https://img2.meite.com/question/2024-05/6645c337c3044.png" />
</p>