2024年成考专升本《高等数学一》每日一练试题06月20日
<p class="introTit">单选题</p><p>1、微分方程y'+y=0的通解为y=()。</p><ul><li>A:e<sup>-x</sup>+C</li><li>B:-e<sup>-x</sup>+C</li><li>C:Ce<sup>-x</sup></li><li>D:Ce<sup>x</sup></li></ul><p>答 案:C</p><p>解 析:所给方程为可分离变量方程,分离变量得<img src="https://img2.meite.com/questions/202212/01638868fa3de9e.png" />。两端分别积分<img src="https://img2.meite.com/questions/202212/01638869176a115.png" />。</p><p>2、<img src="https://img2.meite.com/questions/202211/1763759a91601cd.png" />()。</p><ul><li>A:<img src='https://img2.meite.com/questions/202211/1763759aa1ceb7f.png' /></li><li>B:<img src='https://img2.meite.com/questions/202211/1763759ab1328a4.png' /></li><li>C:<img src='https://img2.meite.com/questions/202211/1763759abd84594.png' /></li><li>D:<img src='https://img2.meite.com/questions/202211/1763759ac908e13.png' /></li></ul><p>答 案:B</p><p>解 析:<img src="https://img2.meite.com/questions/202211/1763759ad8389c8.png" />。</p><p>3、函数z=xy在(0,0)处()。</p><ul><li>A:有极大值</li><li>B:有极小值</li><li>C:不是驻点</li><li>D:无极值</li></ul><p>答 案:D</p><p>解 析:由<img src="https://img2.meite.com/questions/202212/01638846a0930a5.png" />解得驻点(0,0)。<img src="https://img2.meite.com/questions/202212/01638846dac6c67.png" />,B<sup>2</sup>-AC=1>0,所以在(0,0)处无极值。</p><p class="introTit">主观题</p><p>1、将函数<img src="https://img2.meite.com/questions/202212/016388669caf0e9.png" />展开为x的幂级数,并指出收敛区间(不讨论端点)。</p><p>答 案:解:<img src="https://img2.meite.com/questions/202212/01638866b8810f5.png" />,有<img src="https://img2.meite.com/questions/202212/01638866d5b9017.png" />,即收敛区间为(-4,4)。</p><p>2、设<img src="https://img2.meite.com/questions/202211/2963856c2de4338.png" />求C的值。</p><p>答 案:解:<img src="https://img2.meite.com/questions/202211/2963856c7163364.png" />则<img src="https://img2.meite.com/questions/202211/2963856cb44e6d7.png" />,有<img src="https://img2.meite.com/questions/202211/2963856cc277361.png" />,<img src="https://img2.meite.com/questions/202211/2963856cd1025c5.png" />。</p><p>3、将<img src="https://img2.meite.com/questions/202212/01638861372e412.png" />展开为x的幂级数。</p><p>答 案:解:因为<img src="https://img2.meite.com/questions/202212/0163886156cd240.png" />,<img src="https://img2.meite.com/questions/202212/016388616850530.png" />,所以<img src="https://img2.meite.com/questions/202212/016388617f85441.png" /></p><p class="introTit">填空题</p><p>1、过坐标原点且与平面2x-y+z+1=0平行的平行方程为()。</p><p>答 案:2x-y+z=0</p><p>解 析:已知平面的法线向量为(2,-1,1),所求平面与已知平面平行<img src="https://img2.meite.com/questions/202211/1663745885379d6.png" />,因此平面方程可设为<img src="https://img2.meite.com/questions/202211/166374589042355.png" />,又平面过原点,故D=0,即所求平面方程为2x-y+z=0。</p><p>2、<img src="https://img2.meite.com/questions/202211/186376e1ac23dfb.png" />=()。</p><p>答 案:2</p><p>解 析:<img src="https://img2.meite.com/questions/202211/186376e1be9076c.png" /></p><p>3、<img src="https://img2.meite.com/questions/202211/30638722026e1bf.png" />()。</p><p>答 案:<img src="https://img2.meite.com/questions/202211/306387220ce46d3.png" /></p><p>解 析:<img src="https://img2.meite.com/questions/202211/306387221aad9d8.png" /></p><p class="introTit">简答题</p><p>1、讨论级数<img src="https://img2.meite.com/questions/202303/17641427ddeef02.png" />敛散性。</p><p>答 案:<img src="https://img2.meite.com/questions/202303/17641427efb7dc9.png" />所以级数收敛。 </p>