2024年成考专升本《高等数学一》每日一练试题06月19日
<p class="introTit">单选题</p><p>1、曲线y=<img src="https://img2.meite.com/questions/202211/296385ce48a8056.png" />的水平渐近线为()。</p><ul><li>A:x=-2</li><li>B:x=2</li><li>C:y=1</li><li>D:y=-2</li></ul><p>答 案:C</p><p>解 析:y=<img src="https://img2.meite.com/questions/202211/296385ce50751ce.png" />,<img src="https://img2.meite.com/questions/202211/296385ce5bd1993.png" />,可知y=1为曲线的水平渐近线;x=-2为曲线的垂直渐近线。</p><p>2、函数<img src="https://img2.meite.com/questions/202211/296385cd769aee8.png" />单调减少的区间为()。</p><ul><li>A:(-∞,1]</li><li>B:[1,2]</li><li>C:[2,+∞)</li><li>D:[1,+∞)</li></ul><p>答 案:B</p><p>解 析:<img src="https://img2.meite.com/questions/202211/296385cdb8cba03.png" />的定义域为(-∞,+∞),求导得<img src="https://img2.meite.com/questions/202211/296385cdd67cf19.png" />令<img src="https://img2.meite.com/questions/202211/296385cdea4c3e2.png" />得驻点<img src="https://img2.meite.com/questions/202211/296385cdfc01d17.png" />当x<1时,<img src="https://img2.meite.com/questions/202211/296385ce12effde.png" />f(x)单调增加;当1<x<2时,<img src="https://img2.meite.com/questions/202211/296385ce254f76d.png" />,f(x)单调减少;当x>2时,<img src="https://img2.meite.com/questions/202211/296385ce361539c.png" />f(x)单调增加.故单调递减区间为[1,2]。</p><p>3、设x是f(x)的一个原函数,则f(x)=()。</p><ul><li>A:<img src='https://img2.meite.com/questions/202211/306387108d03aec.png' /></li><li>B:<img src='https://img2.meite.com/questions/202211/3063871095ba791.png' /></li><li>C:1</li><li>D:C(任意常数)</li></ul><p>答 案:C</p><p>解 析:x为f(x)的一个原函数,则<img src="https://img2.meite.com/questions/202211/30638710a72dfdf.png" />,等式两边同时求导,得<img src="https://img2.meite.com/questions/202211/30638710baea8c7.png" />。</p><p class="introTit">主观题</p><p>1、求<img src="https://img2.meite.com/questions/202211/176375dbda1481e.png" /></p><p>答 案:解:<img src="https://img2.meite.com/questions/202211/176375dbf09b912.png" /><img src="https://img2.meite.com/questions/202211/176375dc0691603.png" /><img src="https://img2.meite.com/questions/202211/176375dc15283c0.png" />。</p><p>2、求微分方程<img src="https://img2.meite.com/questions/202212/03638abfcd7e3d7.png" />的通解。</p><p>答 案:解:<img src="https://img2.meite.com/questions/202212/03638abfdcef73e.png" />的特征方程为<img src="https://img2.meite.com/questions/202212/03638abff01fb1d.png" />,则特征根为<img src="https://img2.meite.com/questions/202212/03638abffe17da5.png" />,故其通解为<img src="https://img2.meite.com/questions/202212/03638ac008bf86f.png" />因为自由项<img src="https://img2.meite.com/questions/202212/03638ac01b1bf1b.png" />不是特征根,故设特殊解为<img src="https://img2.meite.com/questions/202212/03638ac02b593ed.png" />代入原方程,有<img src="https://img2.meite.com/questions/202212/03638ac03e9196e.png" />故<img src="https://img2.meite.com/questions/202212/03638ac04c2d7ae.png" />的通解为<img src="https://img2.meite.com/questions/202212/03638ac05da9731.png" /></p><p>3、求函数<img src="https://img2.meite.com/questions/202211/16637481ac9faa4.png" />的极大值与极小值。</p><p>答 案:解:<img src="https://img2.meite.com/questions/202211/16637481b49cbf3.png" />令f′(x)=0,解得x<sub>1</sub>=-1;x<sub>2</sub>=1又f″(x)=6x,可知f″(-1)=-6<0,f″(1)=6>0<br />故x=-1为f(x)的极大值点,极大值为7<br />x=1为f(x)的极小值点,极小值为3。</p><p class="introTit">填空题</p><p>1、若积分<img src="https://img2.meite.com/questions/202212/01638805305ac0b.png" />,则积分<img src="https://img2.meite.com/questions/202212/016388053d3b9c9.png" />=()。</p><p>答 案:F(1nx)+C</p><p>解 析:<img src="https://img2.meite.com/questions/202212/016388054c82576.png" />,因为<img src="https://img2.meite.com/questions/202212/0163880557cce59.png" />,所以令<img src="https://img2.meite.com/questions/202212/0163880563626e4.png" />得<img src="https://img2.meite.com/questions/202212/016388059cf11ad.png" />。</p><p>2、已知f(x)的一个原函数为<img src="https://img2.meite.com/questions/202212/03638afcec77a43.png" />,则<img src="https://img2.meite.com/questions/202212/03638afcf9213ea.png" />=()。</p><p>答 案:<img src="https://img2.meite.com/questions/202212/03638afd04dc1fb.png" /></p><p>解 析:因为f(x)的一个原函数为<img src="https://img2.meite.com/questions/202212/03638afd13bd32b.png" />,则<img src="https://img2.meite.com/questions/202212/03638afd1ba529c.png" />所以有<img src="https://img2.meite.com/questions/202212/03638afd30df818.png" />。</p><p>3、设函数y=x<sup>n</sup>,则y<sup>(n+1)</sup>=()。</p><p>答 案:</p><p>解 析:y=x<sup>n</sup>,则<img src="https://img2.meite.com/questions/202211/306386b395080a5.png" /><img src="https://img2.meite.com/questions/202211/306386b3a71dd87.png" />,<img src="https://img2.meite.com/questions/202211/306386b3b68bfb4.png" />。</p><p class="introTit">简答题</p><p>1、设<img src="https://img2.meite.com/questions/202303/1764140acc4272d.png" />求常数a,b</p><p>答 案:<img src="https://img2.meite.com/questions/202303/1764140aef77cdc.png" /> 由此积分收敛知,应有b-a=0,即b=a,
<img src="https://img2.meite.com/questions/202303/1764140b178b135.png" />
</p>