2024年成考专升本《高等数学一》每日一练试题06月17日
<p class="introTit">单选题</p><p>1、微分方程<img src="https://img2.meite.com/questions/202211/176375b0e4ba59e.png" />的阶数为()。</p><ul><li>A:1</li><li>B:2</li><li>C:3</li><li>D:4</li></ul><p>答 案:B</p><p>解 析:所给方程含有未知函数y的最高阶导数是2阶,因此方程的阶数为2。</p><p>2、如果级数<img src="https://img2.meite.com/questions/202212/016388565aa2005.png" />收敛,那么以下级数收敛的是()。</p><ul><li>A:<img src='https://img2.meite.com/questions/202212/01638856693a12a.png' /></li><li>B:<img src='https://img2.meite.com/questions/202212/01638856729a2d8.png' /></li><li>C:<img src='https://img2.meite.com/questions/202212/016388567c54e3e.png' /></li><li>D:<img src='https://img2.meite.com/questions/202212/0163885686f3f8b.png' /></li></ul><p>答 案:A</p><p>解 析:A项。级数<img src="https://img2.meite.com/questions/202212/016388569477790.png" />收敛,则<img src="https://img2.meite.com/questions/202212/01638856a1d6cfc.png" />收敛;由极限收敛的必要条件可知,<img src="https://img2.meite.com/questions/202212/01638856b353526.png" />=0,则B项,<img src="https://img2.meite.com/questions/202212/01638856c5ef172.png" />=1;C项,<img src="https://img2.meite.com/questions/202212/01638856d39abc7.png" />;D项,<img src="https://img2.meite.com/questions/202212/01638856e95c74d.png" />。</p><p>3、设y=x+lnx,dy=()。</p><ul><li>A:<img src='https://img2.meite.com/questions/202211/1763759a187aa8e.png' /></li><li>B:<img src='https://img2.meite.com/questions/202211/1763759a293d569.png' /></li><li>C:<img src='https://img2.meite.com/questions/202211/1763759a38c61cf.png' /></li><li>D:<img src='https://img2.meite.com/questions/202211/1763759a44bed03.png' /></li></ul><p>答 案:B</p><p>解 析:y=x+lnx,则<img src="https://img2.meite.com/questions/202211/1763759a59cf79f.png" />。</p><p class="introTit">主观题</p><p>1、设f(x,y)为连续函数,交换二次积分<img src="https://img2.meite.com/questions/202212/01638852a69d533.png" />的积分次序。</p><p>答 案:解:由题设知<img src="https://img2.meite.com/questions/202212/01638852b7b66e1.png" />中积分区域的图形应满足1≤x≤e,0≤y≤lnx,因此积分区域的图形见下图中阴影部分<img src="https://img2.meite.com/questions/202212/01638852ea3b3a1.png" />.由y=lnx,有x=e<sup>y</sup>。所以<img src="https://img2.meite.com/questions/202212/0163885309c8a22.png" />。</p><p>2、求<img src="https://img2.meite.com/questions/202211/176375a84a8cfed.png" /></p><p>答 案:解:方法一:(洛必达法则)<img src="https://img2.meite.com/questions/202211/176375a85dc2360.png" />方法二:(等价无穷小)<img src="https://img2.meite.com/questions/202211/176375a870ab12a.png" /><img src="https://img2.meite.com/questions/202211/176375a87faccf4.png" /></p><p>3、求函数y=xe<sup>x</sup>的极小值点与极小值</p><p>答 案:解:方法一:<img src="https://img2.meite.com/questions/202211/176375aa3db2b45.png" />令y'=0,得x=-1。<br />当x<-1时,y'<0;当x>-1时,y'>0。<br />故极小值点为x=-1,极小值为<img src="https://img2.meite.com/questions/202211/176375aa84bb60d.png" />。<br />方法二:,<br />令y'=0,得x=-1,又<img src="https://img2.meite.com/questions/202211/176375aaa1a9d82.png" />,<img src="https://img2.meite.com/questions/202211/176375aab80c42f.png" />。<br />故极小值点为x=-1,极小值为<img src="https://img2.meite.com/questions/202211/176375aacd1921a.png" />。</p><p class="introTit">填空题</p><p>1、交换二次积分的积分次序,<img src="https://img2.meite.com/questions/202212/0163884aa14b346.png" />()。</p><p>答 案:<img src="https://img2.meite.com/questions/202212/0163884ab4284fb.png" /></p><p>解 析:由题设有<img src="https://img2.meite.com/questions/202212/0163884ac5b442b.png" />从而<img src="https://img2.meite.com/questions/202212/0163884adca8d6c.png" />故交换次序后二次积分为<img src="https://img2.meite.com/questions/202212/0163884aebe3b55.png" />。</p><p>2、设z=arctanxy,则<img src="https://img2.meite.com/questions/202212/016388488057895.png" />+<img src="https://img2.meite.com/questions/202212/016388488b08cef.png" />=()。</p><p>答 案:<img src="https://img2.meite.com/questions/202212/0163884895bf306.png" /></p><p>解 析:<img src="https://img2.meite.com/questions/202212/01638848cf2d5c9.png" />,故<img src="https://img2.meite.com/questions/202212/01638848de73a53.png" />。</p><p>3、过点M<sub>0</sub>(1,-1,0)且与平面x-y+3z=1平行的平面方程为=()。</p><p>答 案:x-y+3z=2</p><p>解 析:已知平面<img src="https://img2.meite.com/questions/202211/186376e29617cc6.png" />的法向量n<sub>1</sub>=(1,-1,3),所求平面π与π<sub>1</sub>平行,则平面π的法向量n//n<sub>1</sub>,取n=(1,-1,3),所求平面过点M<sub>0</sub>=(1,-1,0),由平面的点法式方程可知所求平面方程为<img src="https://img2.meite.com/questions/202211/186376e331d51c7.png" />,即x-y+3z=2。</p><p class="introTit">简答题</p><p>1、已知函数f(x)连续,且满足<img src="https://img2.meite.com/questions/202405/166645beaa03b83.png" />,求f(x).
</p><p>答 案:由于<img src="https://img2.meite.com/questions/202405/166645beaeab9d4.png" />两边同时求导得<img src="https://img2.meite.com/questions/202405/166645beb77c5fe.png" />所以<img src="https://img2.meite.com/questions/202405/166645bebc9ba6e.png" /></p>