2024年成考专升本《高等数学一》每日一练试题06月13日

聚题库
06/13
<p class="introTit">单选题</p><p>1、<img src="https://img2.meite.com/questions/202303/0364019a9408420.png" />  </p><ul><li>A:<img src='https://img2.meite.com/questions/202303/0364019aaa5f6a4.png' /></li><li>B:<img src='https://img2.meite.com/questions/202303/0364019ab08dd7c.png' /></li><li>C:<img src='https://img2.meite.com/questions/202303/0364019ab8072e7.png' /></li><li>D:<img src='https://img2.meite.com/questions/202303/0364019abd90118.png' /></li></ul><p>答 案:C</p><p>解 析:<img src="https://img2.meite.com/questions/202303/036401aab3469b9.png" /></p><p>2、设f(0)=0,且极限<img src="https://img2.meite.com/questions/202211/296385c5c0abcc9.png" />存在,则<img src="https://img2.meite.com/questions/202211/296385c5d18b46e.png" />等于()。</p><ul><li>A:f'(x)</li><li>B:f'(0)</li><li>C:f(0)</li><li>D:<img src='https://img2.meite.com/questions/202211/296385c5ee43429.png' /></li></ul><p>答 案:B</p><p>解 析:由题意可知<img src="https://img2.meite.com/questions/202211/296385c6082007e.png" />。</p><p>3、设<img src="https://img2.meite.com/questions/202211/176375987592f2d.png" />,则y'=()。</p><ul><li>A:<img src='https://img2.meite.com/questions/202211/176375988687ba4.png' /></li><li>B:<img src='https://img2.meite.com/questions/202211/1763759893ae533.png' /></li><li>C:<img src='https://img2.meite.com/questions/202211/176375989ed230a.png' /></li><li>D:<img src='https://img2.meite.com/questions/202211/17637598ab8c549.png' /></li></ul><p>答 案:C</p><p>解 析:y=x<sup>4</sup>,则<img src="https://img2.meite.com/questions/202211/17637598c296ca6.png" />。</p><p class="introTit">主观题</p><p>1、求<img src="https://img2.meite.com/questions/202211/166374ad60c8c33.png" /></p><p>答 案:解:<img src="https://img2.meite.com/questions/202211/166374ad7a47718.png" /></p><p>2、试证:当x>0时,有不等式<img src="https://img2.meite.com/questions/202212/03638affc6aa0f3.png" /></p><p>答 案:证:先证x>sinx(x>0)。设f(x)=x-sinx,则f(x)=1-cosx≥0(x>0),所以f(x)为单调递增函数,于是对x>0有f(x)>f(0)=0,即x-sinx>0,亦即x>sinx(x>0)。再证<img src="https://img2.meite.com/questions/202212/03638affee811dd.png" /><br />令<img src="https://img2.meite.com/questions/202212/03638afffc44f70.png" /><br />则<img src="https://img2.meite.com/questions/202212/03638b0009b99c4.png" />,所以g'(x)单调递增,又g'(x)=0,可知g'(x)>g'(0)=0(x>0),那么有g(x)单调递增,又g(0)=0,可知g(x)>g(0)=0(x>0),所以<img src="https://img2.meite.com/questions/202212/03638b0054d6d06.png" />即<img src="https://img2.meite.com/questions/202212/03638b0063d9343.png" /><br />综上可得:当x>0时,<img src="https://img2.meite.com/questions/202212/03638b007c4f31d.png" />。</p><p>3、设z=f(x,y)是由方程<img src="https://img2.meite.com/questions/202212/016388512702c56.png" />所确定,求<img src="https://img2.meite.com/questions/202212/0163885132b6538.png" />。</p><p>答 案:解:由<img src="https://img2.meite.com/questions/202212/0163885140e7d04.png" />得全微分方程:<img src="https://img2.meite.com/questions/202212/0163885152cf27a.png" />化简得<img src="https://img2.meite.com/questions/202212/016388516e89256.png" /><img src="https://img2.meite.com/questions/202212/016388517cdc468.png" />所以<img src="https://img2.meite.com/questions/202212/01638851ab158db.png" /><img src="https://img2.meite.com/questions/202212/01638851ba75287.png" />。</p><p class="introTit">填空题</p><p>1、已知函数<img src="https://img2.meite.com/questions/202211/306386d21968a5d.png" />在点x=1处取得极值2,则a=(),c=(),1为极()值点。</p><p>答 案:-1,1,大</p><p>解 析:<img src="https://img2.meite.com/questions/202211/306386d235f3177.png" />,<img src="https://img2.meite.com/questions/202211/306386d244c58f8.png" />,由于(1,2)在曲线y=ax<sup>2</sup>+2x+c上,又x=1为极值点,所以y'(1)=0,有<img src="https://img2.meite.com/questions/202211/306386d27512ba1.png" />解得a=-1,c=1,<img src="https://img2.meite.com/questions/202211/306386d2886d8d9.png" />,则x=1为极大值点。</p><p>2、函数F(x)=<img src="https://img2.meite.com/questions/202303/1764141e90a434f.png" />的单调递减区间是()  </p><p>答 案:<img src="https://img2.meite.com/questions/202303/1764141eac352a5.png" /></p><p>解 析:由<img src="https://img2.meite.com/questions/202303/1764141ebde9126.png" /><img src="https://img2.meite.com/questions/202303/1764141ec86eada.png" /><img src="https://img2.meite.com/questions/202303/1764141eceaeaa9.png" /><img src="https://img2.meite.com/questions/202303/1764141ed520c57.png" />故<img src="https://img2.meite.com/questions/202303/1764141ee51157c.png" />F(x)单调递减。</p><p>3、曲线<img src="https://img2.meite.com/questions/202212/03638afcbb3d8f8.png" />在点(1,2)处的切线方程为()。</p><p>答 案:y-2=3(x-1)</p><p>解 析:y=2x<sup>2</sup>-x+1点(1,2)在曲线上,且<img src="https://img2.meite.com/questions/202212/03638afcd7eeacf.png" />,因此曲线过点(1,2)的切线方程为y-2=3(x-1),或写为y=3x-1。</p><p class="introTit">简答题</p><p>1、设f(x)<img src="https://img2.meite.com/questions/202303/1764141f831cbe2.png" />求f(x)的间断点。</p><p>答 案:由题意知,使f(x)不成立的x值,均为f(x)的间断点,故sin(x-3)=0或x-3=0时f(x)无意义,所以方程点为: x-3=<img src="https://img2.meite.com/questions/202303/17641420052b85c.png" /><img src="https://img2.meite.com/questions/202303/176414200b45e3f.png" />  </p>
相关题库