2024年成考专升本《高等数学一》每日一练试题06月11日
<p class="introTit">单选题</p><p>1、<img src="https://img2.meite.com/questions/202405/166645bbbd3cecb.png" />()
</p><ul><li>A:sinx+C</li><li>B:-sinx+C</li><li>C:cosx+C</li><li>D:-cosx+C</li></ul><p>答 案:D</p><p>解 析:<img src="https://img2.meite.com/questions/202405/166645bbc52708b.png" /></p><p>2、<img src="https://img2.meite.com/questions/202212/03638ae588c44f4.png" />()。</p><ul><li>A:<img src='https://img2.meite.com/questions/202212/03638ae5946a99f.png' /></li><li>B:<img src='https://img2.meite.com/questions/202212/03638ae5a0a586c.png' /></li><li>C:<img src='https://img2.meite.com/questions/202212/03638ae5ab2c9de.png' /></li><li>D:<img src='https://img2.meite.com/questions/202212/03638ae5b7db878.png' /></li></ul><p>答 案:A</p><p>解 析:<img src="https://img2.meite.com/questions/202212/03638ae5cad7d82.png" />。</p><p>3、设f(x)=<img src="https://img2.meite.com/questions/202211/29638564a7b9a5d.png" />在<img src="https://img2.meite.com/questions/202211/29638564b6ea729.png" />上连续,且<img src="https://img2.meite.com/questions/202211/29638564ca6d938.png" />,则常数a,b满足()。</p><ul><li>A:a<0,b≤0</li><li>B:a>0,b>0</li><li>C:a<0,b<0</li><li>D:a≥0,b<0</li></ul><p>答 案:D</p><p>解 析:因为<img src="https://img2.meite.com/questions/202211/29638564e44f0ae.png" />在<img src="https://img2.meite.com/questions/202211/29638564fd5e758.png" />上连续,所以<img src="https://img2.meite.com/questions/202211/296385650bc10f1.png" />因<img src="https://img2.meite.com/questions/202211/296385652266523.png" />则a≥0,又因为<img src="https://img2.meite.com/questions/202211/296385653c413a3.png" />所以<img src="https://img2.meite.com/questions/202211/296385654a65f73.png" />时,必有<img src="https://img2.meite.com/questions/202211/296385655769208.png" />因此应有b<0。</p><p class="introTit">主观题</p><p>1、求微分方程<img src="https://img2.meite.com/questions/202211/166374add1c6145.png" />的通解.</p><p>答 案:解:原方程对应的齐次微分方程为<img src="https://img2.meite.com/questions/202211/166374ade8112f4.png" />特征方程为<img src="https://img2.meite.com/questions/202211/166374adf9e847c.png" />特征根为x<sub>1</sub>=-1,x<sub>2</sub>=3,<br />齐次方程的通解为<img src="https://img2.meite.com/questions/202211/166374ae1b2107f.png" /><br />设原方程的特解为<img src="https://img2.meite.com/questions/202211/166374ae3374b9e.png" />=A,代入原方程可得<img src="https://img2.meite.com/questions/202211/166374ae434e613.png" />=-1。<br />所以原方程的通解为<img src="https://img2.meite.com/questions/202211/166374ae5b9e010.png" />(C<sub>1</sub>,C<sub>2</sub>为任意常数)</p><p>2、求曲线y=x<sup>2</sup>在点(a,a<sup>2</sup>)(a<1)的一条切线,使由该切线与x=0、x=1和y=x<sup>2</sup>所围图形的面积最小。</p><p>答 案:解:设所求切线的切点为(a,b),见下图,<img src="https://img2.meite.com/questions/202212/01638814257361c.png" />则b=a<sup>2</sup>,<img src="https://img2.meite.com/questions/202212/016388143d3fc16.png" />,切线方程为y-b=2a(x-a),y=2ax-2a<sup>2</sup>+b=2ax-a<sup>2</sup>。设对应图形面积为A,则<img src="https://img2.meite.com/questions/202212/01638814689e85a.png" /><br />令<img src="https://img2.meite.com/questions/202212/0163881476e033e.png" />,则<img src="https://img2.meite.com/questions/202212/01638814851e37c.png" />,令<img src="https://img2.meite.com/questions/202212/0163881492513cb.png" />。当a<<img src="https://img2.meite.com/questions/202212/01638814a227100.png" />时,f'(a)<0;当a><img src="https://img2.meite.com/questions/202212/01638814a227100.png" />时,f'(a)>0,故<img src="https://img2.meite.com/questions/202212/0163881536b8640.png" />为f(a)的最小值点,切线方程为:y=x-<img src="https://img2.meite.com/questions/202212/01638815675a0c3.png" />。</p><p>3、计算<img src="https://img2.meite.com/questions/202211/16637484703e391.png" />,其中积分区域D由直线y=x,x=1及x轴围成.</p><p>答 案:解:<img src="https://img2.meite.com/questions/202211/166374847ba8f6e.png" /></p><p class="introTit">填空题</p><p>1、过坐标原点且与平面2x-y+z+1=0平行的平行方程为()。</p><p>答 案:2x-y+z=0</p><p>解 析:已知平面的法线向量为(2,-1,1),所求平面与已知平面平行<img src="https://img2.meite.com/questions/202211/1663745885379d6.png" />,因此平面方程可设为<img src="https://img2.meite.com/questions/202211/166374589042355.png" />,又平面过原点,故D=0,即所求平面方程为2x-y+z=0。</p><p>2、设f(x)=3<sup>x</sup>,g(x)=x<sup>3</sup>,则<img src="https://img2.meite.com/questions/202212/03638afbe35c739.png" />=()。</p><p>答 案:<img src="https://img2.meite.com/questions/202212/03638afbf104955.png" />·1n3</p><p>解 析:g(x)=x<sup>3</sup>,g'(x)=3x<sup>2</sup>,则<img src="https://img2.meite.com/questions/202212/03638afc2482958.png" />=f'(3x<sup>2</sup>),注意等号右端的含义为f(<img src="https://img2.meite.com/questions/202212/03638afc46bb9ed.png" />)在<img src="https://img2.meite.com/questions/202212/03638afc5095882.png" />=3x<sup>2</sup>处的导数,而f(x)=3<sup>x</sup>,即f(<img src="https://img2.meite.com/questions/202212/03638afc46bb9ed.png" />)=<img src="https://img2.meite.com/questions/202212/03638afc82ae020.png" />,则<img src="https://img2.meite.com/questions/202212/03638afc910e655.png" />=<img src="https://img2.meite.com/questions/202212/03638afc82ae020.png" />ln3,所以<img src="https://img2.meite.com/questions/202212/03638afcab92f99.png" /></p><p>3、设<img src="https://img2.meite.com/questions/202211/186376e1cbd80d4.png" />则<img src="https://img2.meite.com/questions/202211/186376e1d9e0698.png" />=()。</p><p>答 案:<img src="https://img2.meite.com/questions/202211/186376e1e5e45e8.png" /></p><p>解 析:<img src="https://img2.meite.com/questions/202211/186376e1f5c9fca.png" />将x看作常量,则<img src="https://img2.meite.com/questions/202211/186376e2089ad12.png" /></p><p class="introTit">简答题</p><p>1、给定曲线<img src="https://img2.meite.com/questions/202303/1764140be29ac3d.png" />与直线y=px-q(其中p>0),求p与q为关系时,直线y=px-q<img src="https://img2.meite.com/questions/202303/1764140be29ac3d.png" />的切线。</p><p>答 案:由题意知,再切点处有<img src="https://img2.meite.com/questions/202303/1764140c40e9e08.png" />两边对x求导得<img src="https://img2.meite.com/questions/202303/1764140c4f7bf80.png" /><img src="https://img2.meite.com/questions/202303/1764140c558ef84.png" /></p>